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Abstract 

Since the seminal Card, Moran, & Newell (1983) book, The psychology of human-computer 
interaction, the concept of the GOMS model has been one of the few widely known theoretical 
concepts in human-computer interaction. This concept has spawned much research to verify and 
extend the original concept and has been used in real-world design and evaluation situations. 
The original presentation of the GOMS concept left substantial room for interpretation and 
subsequent researchers and practitioners have applied the idea in a variety of ways. While this 
variety shows that the GOMS concept is fruitful, there is some confusion about the GOMS 
concept and the various approaches that share this label yet appear to be radically different. This 
paper synthesizes the previous work on GOMS to provide an integrated view of GOMS models 
and how they can be used in design. The major variants of GOMS that have matured sufficiently 
to be used in real-world design and evaluation situations are described and related to the original 
GOMS proposal and to each other. A single example is used to illustrate all of the techniques. 
Guidance is provided to practitioners who wish to use GOMS for their design and evaluation 
problems, and examples of actual applications of GOMS techniques are presented. 

1. Introduction 

1.1. Purpose of this Paper 

Since the seminal Card, Moran, & Newell (1983) book, The Psychology of Human-Computer 
Interaction, (hereafter, CMN) the concept of the GOMS Model has been one of the few widely 
known theoretical concepts in human-computer interaction (HCI). This concept has spawned 
much research to verify and extend the original concept. In 1990, Olson and Olson reviewed the 
state of the art of cognitive modeling in the GOMS tradition, discussing several extensions to the 
basic framework in the research stage of development and pointing the way to several more 
plausible and useful extensions that could be explored. They also outlined several significant 
gaps in cognitive theory that prevent cognitive modeling in general from addressing some 
important aspects of HCI (e.g., fatigue) and argued that cognitive models are essentially the 
wrong granularity or form to address certain other aspects of computer systems design, such as 
user acceptance and fit to organizational life (but see Carley & Prietula, 1994, for an opposing 
view). 

This paper, coming several years later in the history of HCI cognitive modeling, has different 
goals from the Olson & Olson paper. The major goal is to clarify the relationships between the 
different variants of GOMS models that have appeared since the CMN work. There appears to 
be confusion about the relationship of these seemingly different ideas to the original concept and 
to each other, and also about which GOMS variant is suitable for which design and evaluation 
tasks. Thus, the first goal of this paper is to provide a synthesis of the GOMS models in the 
literature to clear up these points of confusion, 

A second goal of this paper is to provide guidance to practitioners wishing to select a GOMS 
variant for their design or evaluation task, and to briefly demonstrate the value of GOMS 
techniques in real-world design and evaluation tasks. Thus, this paper focuses on that subset of 
GOMS research that has reached sufficient maturity to be tools in the engineer's toolbox of 
design. The techniques we survey are all variants of the original GOMS concept that have been 
sufficiently tested and codified to leave the research laboratory, to be taught to practitioners, and 
to be used in real-world design and evaluation situations. We present some examples of 
applying GOMS techniques to design situations, ranging from small design issues to whole 
systems, and with payoffs ranging from informally positive to actual dollar figures. We hope 
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these examples will help HCI practitioners to see value in GOMS for their own situations. 

The organization of this paper is as follows. First, in the remainder of this introduction, we 
discuss the concept of engineering models for computer system design; GOMS models are a kind 
of engineering model. The second major section of the paper introduces the basic concept of 
GOMS models that is common to all of the techniques we discuss. The third section defines the 
current members of this GOMS family of models and discusses their similarities and differences 
using a single example task. The fourth section describes how the GOMS family can be applied 
in design. The fifth section provides some brief case histories of how members of the GOMS 
family have been applied in actual software development situations. 

1.2. Engineering Models of Human-Computer Interaction 

Before beginning the discussion of the GOMS concept and particular instantiations of that 
concept, it is useful to understand the motivation for developing such techniques. The overall 
philosophy behind GOMS and other HCI cognitive modeling efforts is to provide engineering 
models of human performance. Engineering models seek to optimize several criteria that 
distinguish them from traditional, psychologically-oriented cognitive models: (1) the ability to 
make a priori predictions; (2) the ability to be learned and used by practitioners as well as 
researchers; (3) coverage of relevant tasks; and (4) approximation. Card, Moran, & Newell 
developed the concept of GOMS models with these criteria for useful engineering models in 
mind. GOMS models are usefully approximate, make a priori predictions, cover a range of 
behavior involved in many HCI tasks, and have been proven to be learnable and usable for 
computer system designers. 

A priori prediction. In a research environment, cognitive models are often evaluated by 
estimating their goodness of fit to empirical data, using some aspect of the data to estimate some 
of the parameters in the model. Appropriate statistical techniques can be applied to determine 
whether the model essentially gives back more information about the data than it received in the 
form of parameter estimates. Such parameter estimation is clearly required to develop and test 
scientific models. However, to be useful, engineering models must be able to make predictions 
in the absence of a working version, prototype, or mock-up of the system because the predictions 
are needed early in the design process where they can be used to shape the specifications of the 
system. Thus, any parameters used to make the predictions must be set during the construction 
of the model, not on the basis of behavioral data collected on the new system. Since a system is 
not yet in existence, the model cannot require new experiments to be run in the new situation to 
set the parameters. This does not mean that parameters have to be fixed constants for every 
situation, only that they must be determinable a priori. For example, tables of parameters 
covering a wide range of tasks can be created based on previous research. 

Learnability and usability. It must be possible for engineering models to be learned and used 
by computer system designers. Since the target users of HCI engineering models are not trained 
psychologists or human factors experts, they cannot be expected to bring psychological expertise 
to the task. Thus, the basic psychology must be "built into" the models. An example is that 
tables of parameter values can replace detailed expertise in many situations. In addition, the 
procedures for constructing and applying the model must be clearly defined and representative 
examples must be presented to allow the techniques to be taught and learned by the intended 
model users. This does not mean that the procedures have to be as fixed and explicit as recipes 
in a cook book. However, there must be guidelines and rules about what to do in many 
representative situations so that a style of analysis can be developed that leads to useful 
predictions. 

Coverage. Engineering models must address a useful range of design issues. The problem in 
HCI is that the range of activities performed by people interacting with computer systems is 
quite varied, ranging from simple perceptual-motor actions such as pointing with a mouse, to 



extremely complex activities such as comprehending textual or pictorial material, all the way to 
creative problem-solving. Covering this entire span is not possible today with engineering 
models, and some issues may never be addressable with engineering models (e.g. predicting 
creativity). However, there are three general issues for which effective coverage is possible 
today and extremely important. First, the lower-level perceptual-motor issues, such as the effects 
of layout on key stroking or mouse pointing, can be well captured by existing models, or 
extensions of them. Second, the complexity and efficiency of the interface procedures is 
addressed very well by models in the GOMS family. Since at some point the user must always 
acquire and execute a procedure in order to perform useful work with a computer system, it is 
especially valuable that engineering models can address the procedural aspects of a user 
interface. Third, it is essential that the whole task be considered when designing a system. That 
is, optimizing the various aspects or portions of an interface in isolation will not ensure that the 
system is more usable overall or that it will allow the whole task to be performed more 
effectively. GOMS models are especially useful for such analyses because one way to 
characterize a whole task is to describe the procedures entailed by the whole task; this allows the 
individual aspects of the interface to be considered in the entire task context. 

Approximation. Engineering models in all disciplines of engineering are deliberately 
approximate. They include just the level of detail necessary to do the design job. For example, 
when sizing a duct for an air-conditioning unit, fine variations in volume with respect to 
temperature are ignored if the air can be assumed to be in a certain range of temperature. If this 
assumption holds, then the equations are very simple, relating the area of the duct to the rate of 
air passing through it. However, when the same air is traveling through the pipes in the cooling 
chamber of the air-conditioner, where there is a substantial temperature change from hot to cool, 
this assumption no longer holds, and many other factors have to be incorporated, such as the 
relative humidity and compressibility. In the same way, engineering models for HCI must be 
approximate in nature, attending to only those details necessary to analyze the design problem 
while keeping the modeling effort tractable. 

When engineers use approximate models, they do not do so blindly, but in the context of 
knowledge of a more detailed theory. They know what terms exist in the detailed theory, how 
sensitive the predictions are to variations in those terms, and, therefore, which terms can be 
dropped to make calculations tractable without sacrificing the accuracy necessary for the design 
situation. This can be done because the theory specifies the mechanism of the phenomenon it 
describes. Similarly, engineering models in HCI must be approximations to the processes 
involved in human behavior, not simply approximations to the behavior. In this way, the 
theoretical foundations of the models allow the designer to choose the right model for the 
required level of detail in the design problem, and to recognize when the design problem 
involves issues and factors not addressed by the models. 

A common engineering guideline is the "80/20 rule", which states that you get 80% of your 
results from 20% of your design effort, and the remaining 20% takes 80% of the effort. 
Engineering models in HCI should strive for that first 80% of coverage with 20% of the effort. 
For instance, if a computer system were designed and a prototype built, then the behavior of 
scores of users could be observed and analyzed in detail and the "truth" would be known about 
the system. Taking this as 100% knowledge and effort, engineering models in HCI should strive 
to for 80% accuracy with less than 20% of the effort of prototyping and testing. That is, 
engineering models should be able to predict various behavioral aspects, e.g., the sequence of 
operations, the execution time, the learning time, and the occurrence of errors, to within 80% of 
what would be observed if the running system could be measured. Thus, less than perfect 
predictions are acceptable, but engineering models must be simplified approximations of the real 
situation in order to obtain such predictions with a small amount of effort. 

Although engineering models need not exceed the level of approximation necessary for design 
purposes, as long as the other criteria are met, such models may be as detailed as their traditional 



psychology counterparts. In fact, quite detailed and exact models could be incorporated into an 
easily used computer simulation of the user, or simple models could account for as much 
performance phenomena as more complex models. Either way, useful engineering models 
emphasize a priori quantitative predictions, usability, and coverage, usually, but not always, at 
the expense of accuracy. The GOMS-family of engineering models satisfy these criteria for 
many important HCI tasks. 

2. Definition of GOMS Models 

The starting point for our discussion of GOMS is to define the concept of a general GOMS 
model (subsequently referred to as the GOMS concept or just the GOMS model). This concept 
is much weaker than any other proposal, even the original CMN proposal, but it serves to capture 
what all GOMS models have in common. The general GOMS concept is defined as follows: 

It is useful to analyze knowledge of how to do a task in terms of the components of goals, 
operators, methods, and selection rules. 

While similar to many other task decomposition strategies (e.g., Diaper, 1989; Gilbreth & 
Gilbreth, 1917; Newell & Simon, 1972; Van Cott & Kinkade, 1972), this concept has spawned a 
family of task analysis and modeling techniques, the GOMS family. In this section of this paper, 
we define each of the components of the model (goals, operators, methods, and selection rules) 
in more detail, and then in the next section, we describe the different kinds of models currently in 
the GOMS family and their relation to underlying human information-processing architectures. 
This discussion is limited to approaches that have been presented in the literature in an explicitly 
"how-to" form, ready to use by practitioners. 

2.1. Goals 

Goals are what the user has to accomplish. The common-sense meaning of the term applies 
here; a goal is the "end towards which effort is directed" (Webster's, 1977, p. 493). The classic 
example presented in CMN is in the domain of text-editing, where the user is presented with a 
hard-copy manuscript marked-up with editing changes, and the user's goal is to make all those 
changes in an on-line copy of that manuscript. Goals are often broken down into sub-goals; all 
of the subgoals must be accomplished in order to achieve the overall goal. For instance, in a 
manuscript marked with the four editing changes shown in Figure 1, the top-level goal would be 
EDIT-MANUSCRIPT and the sub-goals might be MOVE-TEXT, DELETE-PHRASE and INSERT-WORD. 
All of the subgoals must be accomplished to accomplish the higher-level goal. 

Goals and sub-goals are often arranged hierarchically, but a strict hierarchical goal structure is 
not required. In particular, some versions of GOMS models allow several goals to be active at 
once, and some versions encode extremely well-practiced behavior in a "flattened" structure that 
does not seem to require a hierarchy of subgoals. 

2.2. Operators 

An operator is an action performed in service of a goal. Operators can be perceptual, 
cognitive, or motor acts, or a composite of these. Operators can change the user's internal mental 
state and/or physically change the state of the external environment. The important parameters 
of operators, in particular execution time, are assumed to be independent of how the user or the 
system got into the current state (i.e., independent of the history of operators). Execution time 
may be approximated by a constant, by a probability distribution, or by a function of some 
parameter. For instance, the time to type a word might be approximated by a constant (e.g., the 
average time for an average word by an average typist), or a statistical distribution, or by a 
function involving the number of letters in the word and the time to type a single character 
(which could, in turn be approximated by a constant or a distribution). The accuracy of 
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Figure 1. A set of simple text-editing tasks illustrating several different text editing goals. 

predictions obtained from a GOMS model depends on the accuracy of this assumption and on the 
accuracy of the duration estimates. 

2.4. Methods 

Methods are sequences of operators and subgoal invocations that accomplish a goal. If the 
goals have a hierarchical form, then there is a corresponding hierarchy of methods. Clearly the 
content of the methods depends on the set of possible operators and on the nature of the tasks 
represented. 

For instance, in our text-editing example, if DELETE-PHRASE was defined as a goal, and MOVE- 
MOUSE, CLICK-MOUSE-BUTTON, SHIFT-CLICK-MOUSE-BUTTON and HIT-DELETE-KEY were 
defined as operators, one method for accomplishing DELETE-PHRASE (in the text-editor we are 
using to write this paper) would be to MOVE-MOUSE to the beginning of the phrase, CLICK- 
MOUSE-BUTTON, MOVE-MOUSE to the end of the phrase, SHIFT-CLICK-MOUSE-BUTTON, and 
finally, HIT-DELETE-KEY (the mark-and-delete method). 

2.5. Selection Rules. 

There is often more than one method to accomplish a goal. Instead of the above mark-and- 
delete method just described, another method for accomplishing the DELETE-PHRASE goal in 
Figure 1 would be MOVE-MOUSE to the end of the phrase, CLICK-MOUSE-BUTTON, and HIT- 
DELETE-KEY 11 times (the delete-characters method). If there is more than one method 
applicable to a goal, then selection rules are necessary to represent the user's knowledge of which 
method should be applied. Typically such rules are based on specific properties of the task 
instance. Selection rules can arise through a user's personal experience with the interface or from 
explicit training. Continuing our text-editing example, a user may have a rule for the delete- 
phrase goal that says if the phrase is more than 8 characters long, then use the mark-and-delete 
method, otherwise use the delete-characters method. 

2.3. Level of Detail 

It is important to clarify a common point of confusion about goals and operators. The 
distinction is strictly one of the required level of detail: 



The difference between a goal and an operator in a GOMS analysis is merely a matter of the 
level of detail chosen by the analyst; for a goal, the analyst provides a method that uses lower- 
level operators to specify the details of how it is to be accomplished; in contrast, operators are 
not broken down any further. 

That is, an analyst will decide that certain user activities do not need to be "unpacked" into any 
more detail, and thus will represent them as operators, while other activities do need to be 
considered in more detail, and so will represent these in terms of goals with their associated 
methods. Thus, any particular GOMS analysis assumes a certain grain of analysis, a "stopping 
point" in the level of detail, chosen to suit the needs of the analysis. Continuing the text-editing 
example given above, a GOMS analysis could have only one goal (ED1T-MANUSCR1PT) and a few 
high-level operators (e.g., MOVE-TEXT, DELETE-PHRASE and INSERT-WORD). Or, if the design 
situation required a finer level of detail, the analysis could have four goals {EDIT-MANUSCR1PT, 
with MOVE-TEXT, DELETE-PHRASE and INSERT-WORD as subgoals) and finer-grained operators 
like MOVE-CURSOR, CLICK-MOUSE-BUTTON, DOUBLE-CLICK-MOUSE-BUTTON, SHIFT-CLICK- 
MOUSE-BUTTON and HIT-DELETE-KEY to accomplish these goals. 

In principle, the goals and operators of a task could be described at ever-deeper levels of detail, 
down to muscle group twitches. However, all GOMS methodologies stop at a much higher level 
of detail, which is deemed adequate for the analysis problem at hand. The lowest-level operators 
in an analysis are termed primitive operators in this paper. As discussed above, at any stopping 
point, the analyst must be sure that it is reasonable to assume that important properties of the 
operators, in particular execution time, are constant (or are a constant function of some given 
parameter) regardless of the surrounding context. These properties can then be estimated from 
data, either from the current task being analyzed or from previous similar tasks, and used to 
predict performance on new tasks. 

CMN demonstrated nine models at four levels of analysis, with the highest-level being the 
unit-task level, in which the operators represented a whole task unit lasting about 30 sec, and the 
lowest level being at the keystroke-level, in which the operators are at the level of single 
keystrokes, mouse moves, and so forth, with a duration of about a second or less. At a lower 
level, Rosenbloom (Laird, Rosenbloom & Newell, 1986) proposed GOMS models in which a 
basic operator corresponded to the cognitive cycle time of the Model Human Processor (about 50 
ms). 

An analyst must make the decision about which level of detail to use. That decision hinges 
primarily on the demands of the design or evaluation task the model is meant to accomplish, but 
it also depends on the availability of data for operator time estimates. Some design and 
evaluation situations give the analyst opportunity to directly measure operators at a given level 
on existing systems or prototypes, other situations may preclude such measurement and force the 
analyst to choose a grain of analysis for which there are known operator estimates, such as the 
keystroke level. In addition, although CMN's worked examples show a uniform level of detail 
within the each analysis, it is not essential that all primitive operators be at the same level. Many 
design situations will call for some procedures to be examined in more detail than others. For 
instance, when designing a hypermedia system, the analyst may be especially interested in the 
procedures for navigating through the system, but less interested in the understanding the details 
of how users will search and comprehend text, graphics, and movies to find specific information. 
Therefore, the analyst may chose to do a keystroke-level analysis of the navigation machanisms 
and define higher-level primitive operators for comprehension (e.g., FTND-INFORMATION-ON- 
SCREEN). If different levels of detail are used, the analyst should be aware that some aspects of 
GOMS techniques may not apply uniformly within such an analysis. For example, predicting 
execution times requires that the operators have known durations, and some of the analyst- 
defined higher-level operators might require empirical measurement before the execution time 
can be predicted for the methods that use them. Likewise, as will be discussed more later, 
predictions of method learning time will generally not be possible if the analyst-defined high- 



level operators require learning by the user. 

2.6. Form of a Model 

The different GOMS models in the literature differ substantially, and perhaps confusingly, in 
the basic form and appearance of the models. GOMS models have taken two basic forms, the 
program form and the sequence form. 

A GOMS model in program form is analogous to a parameterized computer program. The 
model takes any admissible set of task parameters and will execute the corresponding instance of 
the described task correctly. For example, the mark-and-delete method described above, in 
program form, would take as task parameters the starting and ending locations of the to-be- 
deleted phrase, and when executed, would cause the mouse to be moved to the corresponding 
locations. Thus, a GOMS model in program form describes how to accomplish a general class of 
tasks, with a specific instance of the class being represented by a set of values for the task 
parameters. Typically, such a model will explicitly contain some form of conditional branching 
and invocations of submethods to accomplish subgoals. The procedural knowledge represented 
in a program form model is fixed, but the execution pathway through the task, that is, the 
sequence of operators executed, will depend on the specific properties of the task instance. Thus, 
once the model is defined, all of the possible tasks can be covered by different execution 
pathways through the model. A program form model is a compact, generative description that 
explicitly represents the knowledge of what features of the task environment the user should 
attend to and how the user should operate the system to accomplish the task goals. 

GOMS models in the program form can be either hand-executable or machine executable. 
Machine-executable models have been expressed in terms of production systems (if-then rules). 
The program form has the advantage that each piece of knowledge is visible to the analyst 
inspecting the model. However, they usually have two disadvantages. First, the only way to 
determine the sequence of operators used in a task is to run the program (either by hand or 
machine) and obtain a trace of the program's execution. Second, the machine-executable models 
have the disadvantage that expressing knowledge in sufficient detail to produce a runnable 
computer program has been historically quite time-consuming. 

In contrast, the sequence form of GOMS model displays a fixed sequence of operators for 
accomplishing a single goal in a particular task scenario. There may be some conditionality and 
parameters included in the sequence model. For instance, in the text-editing example above, 
listing the exact operators necessary to delete the phrase indicated in Figure 1 is a GOMS model 
in sequence form (e.g., MOVE-MOUSE, CLICK-MOUSE-BUTTON, 11*HIT-DELETE-KEY). A more 
general sequence model would take the number of characters in the phrase as a parameter and 
contain an implicit iteration. For example, for the delete-characters method, there would be a 
MOVE-MOUSE operator, a CLICK-MOUSE-BUTTON operator, and then the HIT-DELETE-KEY 
operator would be repeated until there were no more characters in the phrase. The advantages 
and disadvantages of the sequence form are the inverse of the program form. That is, the analyst 
does not have the difficult job of explicitly defining the knowledge necessary for every possible 
task situation in program-like detail, and the sequence of operators is clearly visible to the 
analyst. But there may be more knowledge available about the task methods that is not explicitly 
written out and therefore not inspectable. Also it is time-consuming to write sequence-form 
models by hand for a large set of tasks. 

We will discuss how an analyst might choose between program and sequence forms, 
depending on design or evaluation needs, in Section 4. 

3. The Current GOMS Family 

The concepts associated with GOMS are a mixture of several types: task analysis techniques 



based on different assumptions, models of human performance on specific tasks, computational 
models of human cognitive architecture, and loosely-defined concepts about human cognition 
and information processing. Figure 2 displays the relationships between these ideas. The figure 
is a lattice; at the top is the idea of task analysis, and at the bottom is the basic conceptual 
framework for human information processing, namely that of the stage model. Thus the GOMS 
family consists of ideas for analyzing and representing tasks in a way that is related to the stage 
model of human information processing. Perhaps this is the distinctive feature of the GOMS 
approach compared to the many other concepts of task analysis in the human factors and system 
design literature. 

Reading down from the top, the top layer consists of task analysis techniques, followed by 
explicit computational cognitive architectures, and at the bottom, conceptual frameworks which 
are informal statements about how humans can be modeled. As one reads down from the top, or 
up from the bottom, the ideas get more explicit and detailed; the middle contains approaches 
whose instantiations are running computer simulation models. 

Three things should be noted about the diagram: (1) Since our primary purpose is to discuss 
GOMS models that are currently described in "ready-to-use" form in the literature, Figure 2 
emphasizes these current techniques and the concepts directly related to them. (2) There are 
areas in the diagram, indicated with italics, which lack ready-to-use models or techniques, or are 
not directly related to GOMS models. The final portion of this section discusses some current 
research related to these issues. Thus, the diagram is certainly not exhaustive: many more nodes 
and arrows could be detailed; what is shown here is only what is central to our discussion of 
currently documented GOMS models. (3) The diagram shows only generic ideas and 
approaches, not specific instances of task modeling. Examples of specific instances of using 
these techniques will be summarized in Section 5. 

We will describe the entries in this lattice, starting with the conceptual frameworks, since they 
form the basis for all GOMS analyses, working through the computational cognitive 
architectures, up to the task-analytic approaches which are the heart of the GOMS family. 

3.1. Conceptual Frameworks 

The conceptual frameworks are conceptual in that they are informally stated assumptions about 
the structure of human cognition. The conceptual frameworks shown are all based on a general 
assertion that human cognition and behavior is usefully analyzed in terms of stages, such as the 
conventional notion that stimuli are first processed perceptually, the resulting information is 
passed to a central cognitive process, which manipulates that information and eventually initiates 
some motor activity. 

The stage idea immediately breaks out into two more specific forms. One is that the stages are- 
performed serially, which certainly has always seemed reasonable for many laboratory tasks. 
The other that the stages can be performed in parallel to some extent, since the different kinds of 
processing are handled by separate mechanisms, or processors. 

The Card, Moran, & Newell (1983) Model Human Processor (MHP) is a parallel architecture. 
Perceptual, cognitive, and motor processing are done by separate processing mechanisms, each 
with their own distinctive types and timing of activities, and with associated principles of 
operation. CMN's important insight was that the empirical human cognition and performance 
literature could be used to motivate and justify an engineering model of human information- 
processing that could be used to predict performance in HCI situations. 

Although the MHP is inherently parallel, only 1 of the 19 examples of reasoning from the 
MHP presented in CMN (1983, Example 7) depend on this fact. The parallel operation of the 
MHP was made clear in John's model of transcription typing (John, 1988; John & Newell, 1989) 
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Figure 2. The GOMS family consists of task analysis techniques that are related to models of human 
information processing. Current research involves additional computational cognitive architectures, 
but only CCT is shown as a "ready-to-use" technique. See text for more discussion. 

in which the processors could operate in a sort of "pipeline" mode, with information moving 
through perceptual, cognitive, and motor stages continuously. This model accounted for 
important properties of skilled typing performance and shows that parallelism can greatly 
influence the structure and performance of a task. 

While CMN provide many examples of how the MHP can be applied to predict performance in 
some well-understood simple task situations similar to the experimental paradigms in the human 
performance literature, and simple real-world analogs of these tasks, they did not provide an 
explicit method for applying the MHP to complex, realistic tasks (the CPM-GOMS methodology 
to be discussed later provides this explication). In Figure 2, the MHP is shown at the border 
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between conceptual architectures and computational cognitive architectures because while it is 
certainly more specified than the simple stage concepts, it is not as fully explicit and 
computationally represented as the ideas in the next level up in the diagram. 

3.2. Computational Cognitive Architectures 

The level of computational cognitive architectures in Figure 2 are proposals for how to 
represent human information processing in terms explicit enough to run as a computer program. 
This representation as a computer simulation is a preferred research tactic in cognitive 
psychology based on the assumption that a computational model has "empirical content" — that 
is, a properly constructed and interpreted model can make predictions of human performance, 
and these predictions can be empirically confirmed. There are several such architectures under 
development in cognitive psychology and artificial intelligence, several of which have been 
applied to topics in HCI, such as Cognitive Complexity Theory (CCT, Kieras & Poison, 1985; 
Bovair, Kieras, & Poison, 1988, 1990), ACT-R and its predecessors (Anderson, 1976, 1983, 
1993), Construction-Integration (Kintsch, 1988, 1992), Soar (Newell, 1990), and EPIC (Kieras & 
Meyer, 1994; Meyer & Kieras, 1994). Each of these architectures makes different assumptions 
about how cognitive processes such as working memory management, flow of control, learning, 
and problem-solving are handled by the architecture, and testing the empirical content of these 
assumptions is an active area of psychological research. In principle, all of these architectures 
could be used to implement a particular GOMS task analysis in a computational model (e.g., 
John & Vera 1992; Peck & John, 1992; Gray & Sabnani, 1994). However, only CCT, a 
production-rule architecture based on the serial stage model, has been used as the basis for a 
specific GOMS technique, NGOMSL, which incorporates CCT's assumptions about working 
memory management, flow of control, and other architectural mechanisms. For brevity, CCT 
will not be discussed further, since its contributions are well represented by the NGOMSL 
technique that will be discussed in the next section. 

3.3. Task Analysis Techniques 

At the top of the GOMS family tree in Figure 2, under the overall node of Task Analysis, the 
node labeled General GOMS represents the concept stated earlier that it is useful to analyze 
knowledge of how to do a task in terms of goals, operators, methods, and selection rules. Thus, 
it is a form of task analysis that describes the procedural, "how-to-do-it" knowledge involved in a 
task. The result of a GOMS-based task analysis will be some form of description of the 
components of GOMS, the goals, operators, methods, and selection rules. As described above, 
GOMS admits a variety of definitions and representations of these components. 

There are three critical restrictions on the kinds of task knowledge that GOMS models can be 
used for. The first is that the task in question must be usefully analyzed in terms of the "how to 
do it," or procedural knowledge required rather than other aspects of knowledge about the 
system, like mental simulations of an internalized device model, or analogical reasoning (see 
Kieras and Poison, 1985, for more discussion). The italicized area to the right under Task 
Analysis represents other existing and potential approaches to task analysis that capture other 
forms of task knowledge. For example, current work on electronics troubleshooting (see Gott, 
1988) incorporates the person's knowledge of electronic components and the structure and 
function of the system under investigation, in addition to various kinds of procedural knowledge, 
and current work in analogical reasoning has been applied to understanding consistency in 
operating systems (Rieman, Lewis, Young & Poison, 1994). 

The second restriction is that the GOMS family can only represent routine cognitive skills, 
which consist of procedural knowledge that originally was derived from problem-solving 
activity, but with practice has taken the form of a routinely invocable sequence of activities that 
accomplishes the goals (see CMN, 1983, Ch. 11). Of course, users often engage in problem- 
solving, exploration, and other non-routine activities while using a computer and other cognitive 
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modeling approaches and task analysis techniques can be used to investigate these behaviors 
(e.g., the Cognitive Walkthrough technique (Wharton, Rieman, Lewis & Poison, 1994) applies to 
exploratory behavior by novice users). These issues, symbolized by the italicized area at the top 
of Figure 2, will be discussed further below, and some related research directions will be touched 
on very briefly. But at this point GOMS would be recommended as a form of task analysis only 
for tasks in which routine operating procedures are an important aspect of the interaction. 

We emphasize, however, that most tasks have some element of routine cognitive skill. 
Composing a research paper requires the skill of text-editing, charting data requires the skill of 
entering information into spreadsheets, interactive programming requires text-editing, 
architectural design with a CAD system requires routine window manipulation, etc. Even if the 
primary task is not routine, those aspects of the task that are routine are amenable to analysis 
with GOMS techniques. Applying GOMS to improve the routine aspects of a complex task will 
reduce the effort necessary to master and perform those routine aspects, getting them out of the 
way of the primary creative task. 

The third restriction is that in all GOMS analysis techniques, the designer or analyst must start 
with a list of top-level tasks or user goals. GOMS analyses and methods do not provide this list; 
it must come from sources external to GOMS (see also Olson and Olson, 1990, Karat & Bennett 
1989). Typically, this list of goals can be obtained from other task analysis approaches (e.g., see 
Diaper, 1989), such as interviews with potential users, observations of users of similar or 
existing systems, or in the worst case, simple intuitions on the part of the analyst. Once this list 
is assembled, GOMS analyses can help guide the design of the system so that the user can 
accomplish the given tasks in an efficient and learnable way. However, except for possibly 
stimulating the analyst's intuitions, the subsequent analysis will not identify any new top-level 
user goals or tasks that the analyst overlooked, or correct a misformulation of the user goals. 

The next level down in the diagram consists of specific proposals for how to carry out a task 
analysis within a GOMS orientation. It is at this level that the differences appear between the 
different versions of GOMS analysis. Note that the general GOMS concept merely asserts that it 
is useful to analyze a task in terms of the user's goals, methods, operators, and selection rules. It 
does not specify any particular technique for doing such an analysis. A particular technique 
requires (1) more specific definitions of the GOMS components, especially the operators, and (2) 
guidance and a procedure for constructing the methods in terms of these more specific 
definitions. 

In the discussion that follows, each technique will be summarized, and examples presented, 
and the relative advantages and disadvantages mentioned. 

KLM. The Keystroke-Level Model (KLM) is the simplest GOMS technique, and was 
originally described in Card, Moran, & Newell (1980a) and later in CMN (Ch. 8). The KLM 
makes several simplifying assumptions that make it a restricted version of GOMS. In particular, 
the analyst must specify the method used to accomplish the particular task of interest, which 
typically entails choosing specific task instances. Other GOMS techniques discussed below 
predict the method given the task situation and the knowledge of methods and selection rules, but 
the KLM does not. Furthermore, the specified method is limited to being in sequence form and 
containing only keystroke-level primitive operators. Given the task and the method, the KLM 
uses the preestablished keystroke-level primitive operators to predict the time to execute the task. 

The original KLM included six types of operators: K to press a key or button, P to point with a 
mouse to a target on a display, H to home hands on the keyboard or other device, D to draw a 
line segment on a grid, M to mentally prepare to do an action or a closely-related series of 
primitive actions, and R to symbolize the system response time during which the user has to wait 
for the system. Each of these operators has an estimate of execution time, either a single value, a 
parameterized estimate (e.g., K is dependent on typing speed and whether a key or mouse button 
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click, press, or release is involved), or a simple approximating function. The KLM also includes 
a set of five heuristic rules for placing mental operators to account for mental preparation time 
during a task that requires several physical operators. 

Subsequent research has refined these six primitive operators, improving the time estimates or 
differentiating between different types of mental operations (Olson & Olson, 1990) and 
practitioners often tailor these operators to suit their particular user group and interface 
requirements (e.g., Haunold & Kuhn, 1994). In addition, the heuristics for placing mental 
operators have been refined for specific types of subtasks (e.g., for making a fixed series of menu 
choices, Lane, Napier, Batsell & Naman, 1993). In particular, since the original heuristic rules 
were created primarily for command-based interfaces, they need to be updated for direct 
manipulation interfaces. Thus, Heuristic Rule 0 should be expanded to read, "Insert M's in front 
of all K's that are not part of argument strings proper (e.g., text or numbers). Place M's in front 
of all P's that select commands (not arguments) or that begin a sequence of direct-manipulation 
operations that belong to a cognitive unit." 

Figure 3 provides a sample KLMs with computation of execution time for moving the phrase 
in the word processing example in Figure 1, using the operator times supplied in CMN (p. 264). 

In terms of underlying architecture, KLM does not need a computational representation 
because the methods are supplied by the analyst and are expressed in sequence form; all the 
information-processing activity is assumed to be contained in the primitive operators, including 

Moving text with the MENU-METHOD 
Description Operator Duration (sec) 
Mentally prepare by Heuristic Rule 0 M 1.35 
Move cursor to beginning of phrase P 1.10 

(no M by Heuristic Rule 1) 
Click mouse button K 0.20 

(no M by Heuristic Rule 0) 
Move cursor to end of phrase P 1.10 

(no M by Heuristic Rule 1) 
Shift-click mouse button 

(one average typing K) K 0.28 
(one mouse button click K) K 0.20 

Mentally prepare by Heuristic Rule 0 M 1.35 
Move cursor to Edit menu P 1.10 

(no M by Heuristic Rule 1) 
Press mouse button K 0.10 
Move cursor to Cut menu item P 1.10 

(no M by Heuristic Rule 1) 
Release mouse button K 0.10 
Mentally prepare by Heuristic Rule 0 M 1.35 
Move cursor to insertion point P 1.10 
Click mouse button K 0.20 
Mentally prepare by Heuristic Rule 0 M 1.35 
Move cursor to Edit menu P 1.10 

(no M by Heuristic Rule 1) 
Press mouse button K 0.10 
Move cursor to Paste menu item P 1.10 

(no M by Heuristic Rule 1) 
Release mouse button K 0.10 

TOTAL PREDICTED TIME 14.38 

Figure 3. A keystroke-level model for moving the text in Figure 1. 

internal actions, which are subsumed by black-box Mental operators. Thus the underlying 



conceptual framework is simply the serial stage model. 

The primary advantage of KLM technique is that it allows a rapid estimate of execution time 
with an absolute minimum of theoretical and conceptual baggage. In this sense it is the most 
"practical" of the GOMS methodologies: it is the easiest to apply in actual interface design 
practice, and by far the simplest to explain and justify to computer software developers. This 
simple estimate of execution times can be used to compare design ideas on benchmark tasks, to 
do parametric evaluation to explore the space defined by important variables (e.g., the length of 
filenames in a command language), and to do sensitivity analyses on the assumptions made (e.g., 
user's typing speed) (CMN; Card, Moran, & Newell, 1980a). 

CMN-GOMS. CMN-GOMS is the term we use to refer to the form of GOMS model presented 
in CMN (1983, Ch. 5; Card, Moran, & Newell, 1980b). CMN-GOMS is slightly more specified 
than general GOMS; there is a strict goal hierarchy, and methods are represented in an informal 
pseudo-code-like notation that can include submethods and conditionals. CMN-GOMS 
describes a task in terms of a hierarchical goal structure and set of methods in program form, 
each of which consists of a series of steps executed in a strictly sequential order. 

In the context of the CMN book, it would appear that the CMN-GOMS model is based on the 
Model Human Processor (MHP), but in fact CMN do not make a tight linkage. In particular, in 
presenting the CMN-GOMS formulation, they provide no description of how the MHP would 
represent and execute CMN-GOMS methods. Furthermore, the GOMS concept itself cannot be 
derived from the MHP as presented in CMN, but is only loosely based on two of the MHP 
Principles of Operation, the Rationality Principle and Problem Space principle, both well 
developed in the problem-solving theoretical literature (e.g., Newell & Simon, 1972; see CMN 
Ch.  11). Thus, Figure 2 shows that the CMN-GOMS model is based only on the serial stage 
model. 

CMN do not describe the CMN-GOMS technique with an explicit "how-to" guide, but their 
presentation of nine models at different levels of detail illustrates a breadth-first expansion of a 
goal hierarchy until the desired level of detail is attained. CMN report results in which such 
models predicted operator sequences and execution times for text editing tasks, operating 
systems tasks, and the routine aspects of computer-aided VLSI layout tasks. These examples are 
sufficiently detailed and extensive that researchers have been able to develop their own CMN- 
GOMS analyses (e.g., Lerch, Mantei, & Olson, 1989). 

Figure 4 is an example of a CMN-GOMS model at the keystroke-level for the text-editing task 
in Figure 1, including details for the MOVE-TEXT goal. Moving is accomplishing by first cutting 
the text and then pasting it. Cutting is accomplished by first selecting the text, and then issuing 
the CUT command. As specified by a selection rule set, selecting can be done in two different 
ways, depending on the nature of the text to be selected. Finally pasting requires selecting the 
insertion point, and then issuing the PASTE command. 

Comparing Figure 4 with Figure 3, the relationship between the CMN-GOMS technique and 
the KLM technique is evident. (Note that the expansion of the MOVE-TEXT goal in Figure 4 
represents the same behavior as the KLM in Figure 3.) For instance, there is a one-to-one 
mapping between the physical operators in the CMN-GOMS model and the Ks and Ps in the 
KLM, but the CMN-GOMS model has other operators at this level: VERIFY-LOCATION and 
VERIFY-HIGHLIGHT, which have no observable physical counterpart (they could perhaps be 
observed with an eye-tracker, but this instrument is not used in any but the most detailed HCI 
research). The KLM has no explicit goals or choices between goals, whereas the CMN-GOMS 
model represents these explicitly. Roughly, the VERIFY operators, goal hierarchies and selection 
rules of the CMN-GOMS model are represented as the M operators in the KLM. That is, 
operators such as VERIFY and goals and selections appear in the CMN-GOMS model in groups 
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GOAL: EDIT-MANUSCRIPT 
GOAL: EDIT-UNIT-TASK ...repeat until no more unit  tasks 

GOAL: ACQUIRE UNIT-TASK ...if task not remembered 
GOAL: TURN-PAGE . . . if at end of manuscript page 
GOAL: GET-FROM-MANUSCRIPT 

GOAL:EXECUTE-UNIT-TASK ...if a unit  task was found 
GOAL: MODIFY-TEXT 

[select: GOAL 
GOAL 
GOAL 

VERIFY-EDIT 

MOVE-TEXT* ...if  text is  to be moved 
DELETE-PHRASE . . . if a phrase is  to be deleted 
INSERT-WORD] . . . if a word is  to be inserted 

*Expansion of MOVE-TEXT goal 
GOAL: MOVE-TEXT 

GOAL: CUT-TEXT 
GOAL: HIGHLIGHT-TEXT 

[select**:  GOAL: HIGHLIGHT-WORD 
MOVE-CURSOR-TO-WORD 
DOUBLE-CLICK-MOUSE-BUTTON 
VERIFY-HIGHLIGHT 

GOAL: HIGHLIGHT-ARBITRARY-TEXT 
.  MOVE-CURSOR-TO-BEGINNING 

CLICK-MOUSE-BUTTON 
MOVE-CURSOR-TO-END 
SHIFT-CLICK-MOUSE-BUTTON 
VERIFY-HIGHLIGHT] 

GOAL: ISSUE-CUT-COMMAND 
MOVE-CURSOR-TO-EDIT-MENUl.10 
PRESS-MOUSE-BUTTON 
MOVE-MOUSE-TO-CUT-ITEM 
VERIFY-HIGHLIGHT 
RELEASE-MOUSE-BUTTON 

GOAL: PASTE-TEXT 
GOAL: POSITION-CURSOR-AT-INSERTION-POINT 

MOVE-CURSOR-TO-INSERTION-POINT 
CLICK-MOUSE-BUTTON 
VERIFY-POSITION 

GOAL: ISSUE-PASTE-COMMAND 
MOVE-CURSOR-TO-EDIT-MENUl.10 
PRESS-MOUSE-BUTTON 
MOVE-MOUSE-TO-PASTE-ITEMl.10 
VERIFY-HIGHLIGHT 
RELEASE-MOUSE-BUTTON 

TOTAL TIME PREDICTED (SEC) 

1.10 
0.20 
1.10 
0.48 
1.35 

0.10 
1.10 
1.35 
0.10 

1.10 
0.20 
1.35 

0.10 

1.35 
0.10 

14.38 

**Selection Rule  for GOAL:   HIGHLIGHT-TEXT: 
If   the   text   to  be  highlighted  is   a   single word,   use   the 
HIGHLIGHT-WORD method,   else use  the HIGHLIGHT-ARBITRARY-TEXT method. 

Figure 4.   Example of CMN-GOMS text-editing methods showing the top-level unit-task method 
structure and a selection rule. 

that roughly correspond to the placement of Ms in the KLM. This is only approximately the 
case, as the VERIFY operators sometimes occur in the middle of a group of physical operators, 
but the approximation is close. 

A major difference between the KLM and the CMN-GOMS models is that CMN-GOMS is in 
program form, therefore, the analysis is general and executable. That is, any instance of the 
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described class of tasks can be performed or simulated by following the steps in the model, 
which may take different paths depending on the specific task situation. Goals and method 
selection are predicted by the model given the task situation, and need not be dictated by the 
analyst as they must for the KLM. 

Given the task specified by the manuscript in Figure 1, this model would predict the trace of 
operators shown with the estimates of operator times in the far right column. The estimates for 
the physical operators are identical to the ones in the KLM. The VERIFY-HIGHLIGHT and VERIFY- 
POSITION operators are assigned 1.35sec, the same value as the KLM's M operator because this 
is CMN's best estimate of mental time in the absence of other information.1   Thus, the CMN- 
GOMS model produces the same estimate for task completion as the KLM.   Notice that the 
CMN-GOMS technique assigns time only to operators, not to any "overhead" required to 
manipulate the goal hierarchy. In their results, CMN found that time predictions were as good 
with the simple assumption that only operators contributed time to the task as they were when 
goal manipulation also contributed time, but suggested that at even more detailed levels of 
analysis such cognitive activity might become more important. Also notice that where the KLM 
puts Ms at the beginning of subprocedures, the CMN-GOMS model puts the mental time in 
verify operators at the end of subprocedures. Since mental time is observable only as pauses 
between actions, it is difficult to distinguish between these two techniques empirically, and only 
appeals to more detailed cognitive architectures can explain the distinction. Pragmatically, 
however, this difference is irrelevant in most design situations. We will discuss the issue of 
mental time again after presenting all the GOMS techniques. 

NGOMSL. Conceptually, the NGOMSL technique (Kieras, 1988a, 1994a, b) refines the 
CMN-GOMS model by connecting it to a simple cognitive architecture, namely CCT. It 
originated from attempts to make CCT models more usable by defining higher-level notations to 
represent the content of a CCT model (see Bennett, Lorch, Kieras, & Poison, 1987, and Butler, 
Bennett, Poison, and Karat, 1989). This variation of GOMS provides a well-defined, structured 
natural language, NGOMSL (Natural GOMS Language) suitable for practical application and 
contains an explicit procedure for constructing GOMS models. NGOMSL models are in 
program form; they make the method structure very explicit, and can represent very general 
methods. Continuing the text editing example, Figure 5 shows the NGOMSL methods involved 
in moving text. Notice that more methods are represented than are executed in the specific task 
instance being used as an example. 

The technique described by Kieras (1988a, 1994a) for constructing NGOMSL models consists 
of a top-down, breadth-first expansion of the user's top-level goals into methods, until the 
methods contain only the operators chosen to be primitive, typically keystroke-level operators. 
The analyst supplies a method for each top-level goal, in which the method steps consist first 
only of operators (no subgoal invocations). These operators are then rephrased as goal assertions 
if more detail is required, and then methods are supplied for these goals in the next pass. This 
heuristic of drafting a method in terms of operators helps the analyst avoid getting bogged down 
in details prematurely, as does the breadth-first approach, which also appears to help the analyst 
identify shared methods in the system. 

As mentioned previously, NGOMSL is directly based on the CCT architecture. There is 
essentially a one-to-one relationship between statements in the NGOMSL language and the 
production rules for a GOMS model written in the CCT format. NGOMSL methods include 
internal operators that represent operations of the CCT architectural mechanisms, such as adding 

1 Some design situations may require, or provide opportunity for using better estimates of specific types of 
mental operators. Analysts can look at the additional empirical work of CMN in Chapter 5 where they measure 
many specific mental times, or other HCI empirical work (e.g. John & Newell, 1987 for estimates of time to recall 
command abbreviations, Olson & Olson, 1990, for mental preparation in spreadsheet use). 



NGOMSL Statements Executions 

Method for goal: Move text 1 
Step 1. Accomplish goal: Cut text. 1 
Step 2. Accomplish goal: Paste text. 1 
Step 3.  Return with goal accomplished. 1 

Method for goal: Cut text 1 
Step 1. Accomplish goal: Highlight text. 1 
Step 2.  Retain that the command is CUT, and 

accomplish goal: Issue a command. 1 
Step 3.  Return with goal accomplished. 1 

Method for goal: Paste text 1 
Step 1.  Accomplish goal: Position cursor at insertion point. 1 
Step 2.  Retain that the command is PASTE, 

and accomplish goal: Issue a command. 1 
Step 3.  Return with goal accomplished. 1 

Selection rule set for goal: Highlight text 1 
If text-is word, then accomplish goal: Highlight word. 
If text-is arbitrary, then accomplish goal: Highlight arbitrary text. 1 
Return with goal accomplished. 1 

External 
Operator 
Times 

Method for goal: Highlight word 
Step 1.  Determine position of middle of word. 
Step 2. Move cursor to middle of word. 
Step 3.  Double-click mouse button. 
Step 4. Verify that correct text is selected 
Step 5.  Return with goal accomplished. 

Method for goal: Highlight arbitrary text 
Step 1. Determine position of beginning of text. 
Step 2. Move cursor to beginning of text. 
Step 3. Click mouse button. 
Step 4. Determine position of end of text, (already known) 
Step 5. Move cursor to end of text. 
Step 6. Shift-click mouse button. 
Step 7. Verify that correct text is highlighted. 
Step 8. Return with goal accomplished. 

Method for goal: Position cursor at insertion point 
Step 1.  Determine position of insertion point. 
Step 2. Move cursor to insertion point. 
Step 3.  Click mouse button. 
Step 4. Verify that correct point is flashing 
Step 5.  Return with goal accomplished. 

Method for goal: Issue a command 
Step 1.  Recall command name and retrieve from LTM the menu name for 

and retain the menu name. 
Step 2.  Recall the menu name, and move cursor to it on Menu Bar. 
Step 3.  Press mouse button down. 
Step 4.  Recall command name, and move cursor to it. 
Step 4.  Recall command name, and verify that it is selected. 
Step 5.  Release mouse button. 
Step 6.  Forget menu name, forget command name, and 

return with goal accomplished. 

Predicted Procedure Learning Time = 801 sec 
Total Predicted Execution Time = 16.38 sec 

it, 

1 
1 1.20 
1 1.10 
1 0.20 
1 0.00 
1 1.10 
1 0.48 
1 1.20 
1 

1 
1 1.20 
1 1.10 
1 0.20 
1 1.20 
1 

1 
1 1.10 
1 0.10 
1 1.10 
1 1.20 
1 0.10 

Figure 5. An example of NGOMSL methods for moving text, showing a generic command-issuing 
method that uses items in long-term memory to associate menu names to the contained commands. 
Adapted from Kieras (1994a). 
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and removing information to working memory or asserting goals to be accomplished. At the 
keystroke-level, CCT has been shown to provide good predictions of both execution time (based 
on estimates of time per production firing) and learning time (based on estimates of time to learn 
a totally new or similar production) (Kieras & Bovair, 1986; Bovair, Kieras & Poison, 1988, 
1990). Therefore, NGOMSL models can be used not only to estimate execution time like the 
KLM and CMN-GOMS models, but also learning time, with the stipulation that only the time for 
learning procedure steps in a specific learning situation is taken into account, as described in 
Kieras (1994a) and discussed more below. Although an NGOMSL analysis can provide a useful 
description of a task even at a high level of analysis (see Karat & Bennett 1989), quantitative 
predictions of learning and execution times are meaningful only if the methods use operators that 
the user is assumed to already know and that have known properties, such as keystroke level 
operators. 

The basis for the learning time predictions, and some critical qualifications of them, needs 
some discussion. CCT and NGOMSL models have been shown to be good predictors of time to 
learn how to use a system, keeping in mind that what is predicted is the pure learning time for 
the procedural knowledge represented in the methods. Note that, as mentioned above, the user is 
assumed to already know how to execute the operators; the GOMS methods do not represent the 
procedural knowledge involved in the operators themselves, but only represent the knowledge of 
which operators to apply and in what order to accomplish the goal. Innovative interface 
technology often results in new operators, such as moving the cursor with a mouse, selecting 
objects with an eye-movement tracker, or manipulating 3D objects and flying about in virtual 
space with data-glove gestures. Clearly, the time to learn how to execute such new operators is a 
critical aspect of the value of new interface devices, but a GOMS model that assumes such 
operators can not predict their learning time. That is, if new operators are involved, the GOMS 
analysis can predict only the time required to learn the procedures that use the operators; the time 
for learning the new operators themselves would have to be measured, or simply not included in 
the analysis. 

The actual total time to learn how to use a system depends not only on how much procedural . 
knowledge is involved but on how much time it takes to complete the training curriculum itself. 
That is, most learning and training of computer usage takes place in the context of the new user 
performing tasks of some sort, and this performance would take a certain amount of time even if 
the user were fully trained. Thus the total learning time consists of the time to execute the 
training tasks plus the extra time required to learn how to perform the tasks. The pure learning 
time is the excess due to learning, that is, the difference between this total time and the time it 
would take to execute the tasks if the user were already trained. As pointed out by Gong (1993), 
these training task execution times can be estimated from GOMS model of the training tasks. 

The key empirical result is that the procedure learning time is approximately linear with the 
number of CCT production rules or NGOMSL statements that must be learned. Thus, the pure 
learning time for the methods themselves can be estimated just by counting their total length and 
multiplying by an empirically-determined coefficient. Consistency of the methods, or transfer of 
training effects, can be represented by deducting the number of NGOMSL statements in methods 
that are identical, or highly similar, to ones already known to the learner (see Kieras, 1988a, 
1994a; also Bovair, Kieras, & Poison, 1988, 1990). 

An additional component of the pure learning time is the time required to memorize chunks of 
declarative information required by the methods, such as the menu names under which 
commands are found. Such items are assumed to be stored in long-term memory (LTM), and 
while not strictly part of the GOMS methods, are required to be in LTM for the methods to 
execute correctly. Including this component in the learning time estimates is thus a way to 
represent the learning load imposed by menu or command terms, and the heuristics suggested in 
CMN can be applied to estimate the time to memorize these items based on the number of 
chunks. However, it should be kept in mind that the heuristics for counting the number of 



chunks are not very well defined at this time (see Gong, 1993). 

In addition, the general requirements of the learning situation must be taken into account as 
well. The original work by Kieras, Poison, and Bovair used a mastery learning situation, in 
which the users were explicitly trained on the methods and were required to each procedure fully 
and exactly before going to the next (Bovair, Kieras, & Poison, 1990; Kieras & Bovair, 1986; 
Poison, 1988). More recent work by Gong (1993) used a more typical learning situation in 
which users first were given a demonstration and explanation, and then had to perform a series of 
training tasks at their own pace, and without detailed feedback or correction. The NGOMSL 
operators and the number of memory chunks were excellent predictors of this more realistic 
training time, although the prediction coefficients were different than those given in Kieras 
(1988a). Furthermore, even in learning situations that are realistically unstructured, at least the 
ordinal predictions of learning time should hold true, as suggested by results such as Ziegler, 
Hoppe, & Fähnrich (1986). It seems reasonable that regardless of the learning situation, systems 
whose methods are longer and more complex will require more time to learn, because there is 
more procedural knowledge to be acquired, either by explicit study or inferential problem- 
solving. But clearly more work on the nature of relatively unstructured learning situations is 
required. 

The above discussion of estimating learning time can be summarized as follows, using the 
values determined by Gong (1993): 

Total Procedure Learning Time =   Pure Procedure Learning Time 
+ Training Procedure Execution Time. 

Pure Procedure Learning Time =    NGOMSL Method Learning Time 
+ LTM Item Learning Time 

NGOMSL Method Learning Time -17 sec x   Number of NGOMSL Statements 
to be Learned 

LTM Item Learning Time = 7 sec x Number of LTM Chunks to be Learned 

These formulas give a pure procedure learning time estimate for the whole set of methods 
shown in Figure 5 of 801 sec, in a "typical" learning situation and assuming no prior knowledge 
of any methods or menu terms. 

A trace of this NGOMSL model performing the text moving example in Figure 1 is 
summarized in Figure 5. The trace includes the same sequence of physical operators as the KLM 
and CMN-GOMS models in Figure 3 and 4. The predicted execution time is obtained by 
counting 0.1 sec for each NGOMSL statement executed (corresponding to the execution of CCT 
production rules) and adding the total external operator time, using the values recommended in 
Kieras (1994). This gives a predicted execution time of 16.38 sec, which is comparable to the 
predictions of the other two models, which was 14.38 for both the KLM and CMN-GOMS 
models. 

The primary difference between execution time predictions for NGOMSL, KLM and CMN- 
GOMS is how time is assigned to cognitive and perceptual operators. There are some stylistic 
differences in how many large mental operators are assumed; for example, the NGOMSL 
example follows the NGOMSL technique recommendations for the number and placement of 
DETERMINE-POSITION and VERIFY operators, and so has more of such M-like operators than do 
the CMN-GOMS and KLM models. These stylistic differences could be resolved with further 
research. But a more important difference is in the nature of the unobservable operators. The 
KLM has a single crude M operator that precedes each cognitive unit of action. NGOMSL, 
based on CCT, uniformly requires some cognitive execution time for every step, manipulating 
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goals and working memory, and for entering and leaving methods. In contrast, CMN-GOMS 
assigns no time to such cognitive overhead. But all three models include M-like operators for 
substantial time-consuming mental actions such as locating information on the screen and 
verifying entries. Thus these methods assign roughly the same time to unobservable perceptual 
and cognitive activities, but do so at different places in the trace. 

Because NGOMSL models specify methods in program form, they can characterize the 
procedural complexity of tasks, both in terms of how much must be learned, and how much has 
to be executed. However, NGOMSL models are based on CCT, which in turn assumes a simple 
serial stage model of human information processing, and so NGOMSL works only for 
hierarchical and sequential methods, with perceptual and motor activities represented only by 
external primitive operators like DETERMINE-POSITION and CLICK-MOUSE-BUTTON. NGOMSL 
models are thus limited in two important ways. First, there is no provision for representing 
methods whose steps could be executed in any order, or which could be interrupted, suspended 
and resumed (e.g. for purposes of error recovery). Second, since perceptual and motor activities 
are represented by operators embedded in the sequential methods, there is no way to represent 
how these might overlap with other activities. For example, there is no provision for 
representing a user doing perceptual processing on an icon while simultaneously homing the 
hand to the mouse and doing a retrieval from long-term memory. So the NGOMSL technique is 
unsuitable for tasks in which such perceptual-cögnitive-motor overlap is important. Such cases 
would be ones in which the interaction was time-stressed, highly practiced, and involved 
displays and controls that permitted some degree of parallel activity. These limitations are not 
serious in many conventional situations involving desktop computing, and also it is possible to 
approximate overlapping operations by setting certain operator times to zero (as has been done in 
Figure 5, see Gong, 1993). These limitations could be overcome by extensions to NGOMSL and 
CCT, but such extensions would be equivalent to using the Parallel Multiple-Processor 
conceptual framework, and so would alter the technique and computational models in a 
fundamental way. However, this type of model and analysis is already represented to some 
extent by CPM-GOMS and some of the research approaches discussed below. 

In contrast to the KLM, which we characterized as having the least conceptual baggage, 
NGOMSL embraces the full psychological theory of CCT. For instance, NGOMSL analyses 
make a commitment to deliberate goal and working memory management.   As we will discuss 
later, the need to understand these theoretical mechanisms probably increases the time to learn 
how to do NGOMSL analysis compared to KLM or CMN-GOMS analyses. However, since 
NGOMSL is the only current GOMS variant that predicts both performance time and learning 
time, an analyst may be willing to master the technique's concepts to reap the benefits of its 
predictive power. 

CPM-GOMS. CPM-GOMS is a task analysis technique based directly on the Model Human 
Processor (MHP), and thus, on the parallel multi-processor stage model of human information 
processing. It does not make the assumption that operators are performed serially, i.e., 
perceptual, cognitive and motor operators at the level of MHP processor cycle times can be 
performed in parallel as the task demands. CPM-GOMS uses a schedule chart (or PERT chart, 
familiar to project managers, e.g. Stires & Murphy, 1962) to represent the operators and 
dependencies between operators. The acronym CPM stands for both the Cognitive-Perceptual- 
A/otor analysis of activity, and also Critical Path Method, since the critical path in a schedule 
chart provides a simple prediction of total task time. 

To build CPM-GOMS models the analyst begins with a CMN-GOMS model of a task with 
operators at a level such that they are primarily perceptual (READ-SCREEN, LISTEN-TO- 
CUSTOMER) or motor (ENTER-COMMAND, GREET-CUSTOMER). These operators are then 
expressed as goals and implemented with methods of MHP-level operators. John & Gray (1992, 
1994) have developed templates of the combinations of MHP-level cognitive, perceptual and 
motor operators that implement many different activity-level goals under different task 
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conditions. For instance, the READ-SCREEN goal is accomplished with the operators in the first 
template in Figure 6 when an eye-movement is required and with the second template when it 
isn't because the user is already looking at the point where the highlighting will appear. Each 
operator in the templates is associated with a duration estimate, or a set of estimates that also 
depend on task conditions. For instance, visually perceiving and comprehending a 6-character 
word is has a duration of 290 ms, whereas visually perceiving and comprehending that a symbol 
is merely present or absent (e.g., the presence of highlighting) has a duration of 100 ms, as is 
shown in Figure 6. 

These templates are first joined together serially, and then interleaved to take advantage of the 
parallelism of the underlying conceptual architecture. If empirical data about actual performance 
of observable motor operators is available from a current system that is similar to the system 
being designed, it is desirable to verify the model against these data. Then the verified models 
are modified to represent the proposed design and quantitative predictions of performance time 
can be determined from the critical path of the CPM-GOMS model. Qualitative analysis of what 
aspects of a design lead to changes in the performance time are quite easy once the models are 
built, as are subtask profiling, sensitivity and parametric analyses, and playing "what-if" with 
suggested design features (Chuah, John & Pane, 1994; Gray, John & Atwood, 1993). 

Continuing the example of the MOVE-TEXT goal of Figure 1, Figure 7 shows a CPM-GOMS 
model in the style of Gray, John & Atwood (1993). For brevity, the model covers only the 
portion of the procedure involved with highlighting the text to be moved. Before discussing this 

Perceive Visual Information 
With 

Eye Movement 

Visual Perception 

50 

Cognitive 
Operators 

attend 
info (x) 

Eye Movement 

Perceive Visual Information 
Without 

Eye Movement 

perceive 
info (x) 

J. 50 

attend 
info (x) 

X 50 

verify 
info (x) 

The duration of a perception of a simple binary visual signal is 100 msec. 
The duration of a perception of a complex visual signal similar to a 6 letter word is 290 msec. 

If the eyes have been focusing at a place other than the infomation to be perceived, or if 
unrelated cognitive activity precedes the attend-info operator, then an eye movement is 
required, with it's associated cognitive initiation; use the template "Perceive Visual Information 
With Eye Movement". 

If the user perceived information in that exact area immediately prior to the current situation, 
with no intervening visual or auditory perception or cognitive activity, then it is assumed that 
the eyes remained fixed on the appropriate area and no eye-movement is necessary; use the 
template "Perceive Visual Information Without Eye Movement". 

Figure 6. Example of a template for building CPM-GOMS models adapted from John & Gray, 1994. 



model in detail, however, it is important to note that text-editing is not a good application of the 
CPM-GOMS technique and we present it here only so that similarities and differences to the 
other GOMS variations are clear. Text-editing is usefully approximated by serial processes, 
which is why the KLM, CMN-GOMS and NGOMSL have been so successful at predicting 
performance on text-editors. The CPM-GOMS technique is overly detailed for such primarily 
serial tasks and as will become clear, can underestimate the execution time. For examples of 
tasks for which a parallel-processing model is essential, and where the power of CPM-GOMS is 
evident, see the telephone operator task in Gray, John and Atwood (1993) and transcription 
typing (John, 1988; John & Newell, 1989). 

Although text-editing is not the best task to display the advantages of CPM-GOMS, there are 
several interesting aspects of the model in Figure 7 compared to the example models of the text- 
moving task in the preceding sections. First, there is a direct mapping from the CMN-GOMS 
model to the CPM-GOMS model, because all CPM-GOMS models start with CMN-GOMS and 
the particular model in Figure 7 was built with reference to the one in Figure 4. As with the 
KLM, selection rules are not explicitly represented because CPM-GOMS models are in sequence 
form, and the analyst implements the selection by choosing a particular method for each task. 
For example, in Figure 7, the selection between HIGHLIGHT-ARBITRARY-PHRASE and HIGHLIGHT- 
WORD that is explicitly represented in CMN-GOMS and NGOMSL, is only implicit in the 
analyst's choice of the method for this model. The times for the various operators are shown on 
the boxes in the schedule chart, based on the durations estimated by John & Gray (1994), and the 
highlighted lines and boxes comprise the critical path. 

Parallelism in the model is illustrated in the set of operators that accomplish the MOVE-TO- 
BEGINNING-OF-PHRASE goal. These operators are not performed strictly serially, that is, the eye- 
movement and perception of information occur in parallel with the cursor being moved to the 
new location. The information-flow dependency lines between the operators ensure that the eyes 
must get there first, before the new position of the cursor can be verified to be at the right 
location, but the movement of the mouse takes longer than the eye-movement and perception, so 
it defines the critical path. 

Multiple active goals can be represented in CPM-GOMS models and are illustrated in Figure 7 
in the sets of operators that accomplish the MOVE-TO-END-OF-PHRASE goal and the SHIFT-CLICK- 
MOUSE-BUTTON goal. Because the shift key is hit with the left hand (in this model of a right- 
handed person) and the mouse is moved with the right hand, the pressing of the shift-key can 
occur while the mouse is still being moved to the end of the phrase. Thus, the operators that 
accomplish the SHIFT-CLICK-MOUSE-BUTTON goal are interleaved with the operators that 
accomplish the MOVE-TO-END-OF-PHRASE goal. This interleaving represents a very high level of 
skill on the part of the user. 

Reading the total duration on the final item of the critical path gives a total execution time 
through this subsequence of the task of 2.21 sec. Totaling the execution time over the same steps 
in the other models gives 4.23 sec for both the KLM and CMN-GOMS and 6.18 sec for the 
NGOMSL model. 

Although the qualitative process in this example of a CPM-GOMS model is reasonable, its 
quantitative prediction is much shorter than the estimates from the other models. The primary 
source of the discrepancy between the GOMS-variants is the basic assumption in the commonly- 
used form of the CPM-GOMS technique that the user is extremely experienced and executes the 
task as rapidly as the MHP architecture permits. It should be kept in mind that this particular 
example task is not really suitable for CPM-GOMS, but is presented to facilitate comparison 
with the other techniques, and show how CPM-GOMS can represent parallel activities in the 
same editing task. Some discussion of why the CPM-GOMS technique predicts an execution 
time that is so much shorter than the others will help clarify the basic assumptions of this form of 
GOMS analysis. 
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One aspect of the extreme-expertise assumption is that the example model assumes that the 
user knows exactly where to look for the to-be-moved-phrase. This means that the model needs 
only one eye-movement to find the beginning and one to find the end of the target phrase and 
that the mouse movements to these points can be initiated prior to the completion of the eye 
movements. In some real-world tasks, like telephone operators handling calls (Gray, John, and 
Atwood, 1993), the required information always appears at fixed screen locations, and with 
experience, the user will learn where to look. But in a typical text editing task like our example, 
the situation changes from one task instance to the next, and so visual search would be required 
to locate the target phrase. The CPM-GOMS has been used to model visual search processes 
(Chuah, John & Pane, 1994), but for brevity, we did not include this complexity in our example. 

A second aspect of the assumed extreme expertise is that the example does not include any 
substantial cognitive activity associated with selection of methods or complex decisions. Such 
cognitive activity is represented in the other GOMS variants with M-like operators of about a 
second in duration. In contrast, in Figure 7, the method selection is implicit in a single cognitive 
operator (INITIATE-MOVE-TEXT-METHOD) which is the minimum cognitive activity required by 
the MHP to recognize a situation and note it in working memory. Likewise, VERIFY-POSITION 
operators are included in the CPM-GOMS model, but they represent much more elementary 
recognitions that the cursor is indeed in the location where the model is already looking rather 
than complex verifications that a text modification has been done correctly required in CMN- 
GOMS and NGOMSL. Thus, Figure 7 represents the absolute minimum cognitive activity, 
which is an unreasonable assumption for a normal text-editing task. However, in an experiment 
by CMN (pp. 279-286), the performance time of an expert user on a novel editing task was well 
predicted by the KLM, but after 1100 trials on the exact same task instance, the performance 
time decreased by 35%, largely because the M operators became much shorter. It is this type of 
extreme expertise that our example CPM-GOMS model represents. A more elaborate CPM- 
GOMS model could represent complex decisions as a series of MHP-level operators performing 
minute cognitive steps serially, as in the earlier work on recalling computer command 
abbreviations and transcription typing in John (1988) and John & Newell (1989). However, the 
technique for modeling complex decisions in CPM-GOMS models is still a research issue, and 
so they currently should be used only for tasks in which method selection is based on obvious 
cues in the environment and decisions can be represented very simply. 

A final contributor to the short predicted time is that the mouse movements in CPM-GOMS are 
calculated specifically for the particular target size and distance in this situation, yielding much 
shorter times than CMN's 1.10 sec estimate of average pointing time used in the other models 
(further discussion appears in the next section). 

Thus the CPM-GOMS technique allows one to represent the overlapping and extremely 
efficient pattern of activity characteristic of expert performance in a task. The main contrast with 
the other techniques is that CPM-GOMS models constructed with the current technique do not 
include the time-consuming M-like operators that the other models do, and that would be 
expected to disappear with considerable practice if the system interface holds the relevant 
aspects constant. In fact, if the M-like operators are excluded from the execution time of the 
other models, the predicted times are much closer to the CPM-GOMS prediction, being 2.88 sec 
for KLM and CMN-GOMS, and 3.78 sec for NGOMSL. 

Like NGOMSL, CPM-GOMS carries a substantial amount of conceptual and theoretical 
baggage. Since it is based on the MHP, it requires an understanding of parallel processing and 
information-flow dependencies. These concepts have implications for the ease of learning CPM- 
GOMS, and will be discussed later. 

Summary comparison of GOMS techniques. We have modeled the same goal, MOVE-TEXT, 
with four different GOMS task analysis techniques. For purposes of comparison, we included a 
CPM-GOMS model for the same text-editing task, although the technique is not recommended 
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Table 1 

Predicted time measures (seconds) for each technique for the MOVE-TEXT example . 

KLM        CMN-GOMS       NGOMSL      CPM-GOMS 

Overall Measures 

Procedure Learning    — — 801. 
(both highlighting 
methods) 

Total Example Task   14.38 14.38 16.38 not shown in 
Execution Time this example 

Text Highlighting Sub-Method 

Complete Method      4.23 4.23 6.18 2.21 
Execution Time 

Method Execution      2.88 2.88 3.78 2.21 
Time with no long 
M-like Operators 

Total Cognitive — — 0.90 1.10 
Overhead 

for modeling such sequential tasks, and for brevity, it was shown only for the text-highlighting 
submethod. The KLM, CMN-GOMS and NGOMSL models all produce the same sequence of 
observable operators, as does the CPM-GOMS model (although at a more detailed level). Table 
1 summarizes the quantitative predictions from the above presentation, both for the overall 
example task, and the subtask consisting just of highlighting the to-be-moved text. 

NGOMSL is the only one of the four techniques that makes learning time predictions, and 
these are limited to the effects of the amount of procedural knowledge and related LTM 
information to be learned, and to learning situations for which the coefficients have been 
empirically determined. 

KLM, CMN-GOMS, and NGOMSL produce execution time predictions that are roughly the 
same for both the overall task and the subtask, although they make different assumptions about 
unobservable cognitive and perceptual operators and so distribute the time in different ways (see 
below). An important difference is that the NGOMSL technique currently entails more M-like 
operators than the other techniques, as well as some cognitive overhead due to method step 
execution; thus NGOMSL will typically predict execution times that are longer than KLM or 
CMN-GOMS predictions. 

As shown in the execution time predictions for the text-highlighting submethod, the CPM- 
GOMS model substantially underpredicts the execution time relative to the other models. As 
discussed above, this is due to the assumption of extreme expertise in the current CPM-GOMS 
technique: using maximum operator overlapping, finer-grain time estimates for the individual 
operators, and assuming the minimum of cognitive activity allowed by the MHP. An interesting 
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similarity between NGOMSL and CPM-GOMS is the roughly similar cognitive overhead time in 
the example submethod; in NGOMSL this value is the statement execution time at 0.1 
sec/statement; in CPM-GOMS it is the total time for which the cognitive processor is on the 
critical path in Figure 7. 

Table 2 shows the different operator times assumed in the different techniques and used in 
the example. For the KLM, CMN-GOMS, and NGOMSL models, the estimates for the M-like 
operators shown (Mental Preparation, Determine Position, and Edit Verification) are those 
currently recommended for each technique as average values to be used in the absence of more 
specific measurements. They are all roughly the same at about a second duration, but are slightly 
different because they were determined empirically with different data sets at different historical 
points in the development of GOMS techniques. None of the these techniques have a theoretical 
commitment to any particular value. Any available empirically determined values for the 
operators involved in a particular analysis should be used instead of these average estimates. 
More significant are the differences in the distribution of mental time: the KLM tends to place 
mental time in the preparation for action, while CMN-GOMS mental time tends to come at the 
end of actions in VERIFY operators, and NGOMSL has mental time in both places. These 
stylistic differences could probably be resolved with further research. 

On the other hand, values of those same operators in CPM-GOMS are theoretically driven, as 
they connect to the MHP and its cognitive cycle time (estimated at 70 ms CMN, but refined by 
subsequent work to be 50 ms, John & Newell 1990; Nelson, Lehman & John, 1994; Wiesmeyer, 
1992) Both the duration and position of these unobservable operators are specified by the 
templates used to construct the model. The entry for Mental Preparation is the sum of the 
durations of the two cognitive operators on the critical path that set up the move-text task and 
highlight-phrase subtask. The entry for Determine Position is the sum of the durations of those 
operators that locate the beginning of the phrase on the screen that occur on the critical path. 
Locating this point involves 3 cognitive operators, 1 eye-movement motor operator that would be 
unobservable except with an eye-tracker, and 1 perceptual operator. All of these operators 
depend on each other and have to occur in order, thus, if this were the only activity taking place 
in a task, they would all be on the critical path and take 420 ms. However, since looking for the 
beginning of the phrase is just one part of the move-text task, other activities can occur in 
parallel 

Table 2 

Operator times (seconds) used in each technique for the MOVE-TEXT example.   See text for 
explanation of the CPM-GOMS entries. 

KLM CMN-GOMS NGOMSL CPM-GOMS 

Mental Preparation     1.35 not used not used 0.100 

Determine Position    not used not used 1.20 0.100 

Edit Verification        not used 1.35 1.20 not used 

Cursor movement       1.10 

Click-mouse-button   0.20 

Shift-click- 0.48 
mouse-button 

1.10 1.10 
or Fitts' Law 

0.680 
by Fitts' Law 

0.20 0.20 0.250 

0.48 0.48 0.250 
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(e.g., moving the mouse, discussed in the last section) and their operators are interleaved with 
these, making the critical path more complicated, so that only the first two cognitive operators 
appear on the critical path for this task. 

The operator times for cursor movement deserves a brief note. The 1.10 sec used in the 
techniques is the average value suggested by CMN for large-screen text editing tasks. But Gong 
(1993) found that many of the mouse movements involved in using a Macintosh interface, such 
as making menu selections and activating windows, were much faster than 1.10 sec, and that 
Fitts' Law estimates (see CMN, p. 55) were much more accurate. Thus, Fitts' Law values based 
on the actual or typical locations of screen objects should probably be used whenever possible in 
all of the techniques. For CPM-GOMS, moving the cursor to point to an object is a combination 
of cognitive operators, motor operators and perceptual operators (see Figure 7) and only some of 
them occur on the critical path in any task situation. The duration of the mouse-movement motor 
operator itself was calculated using Fitts' Law. In this example, moving to the beginning of the 
phrase put 680 msec on the critical path and, coincidentally, moving to the end of the phrase also 
put 680 msec on the critical path. 

Finally, the times for mouse button operators and using the shift key in the first three 
techniques are based on values from CMN. The slightly different value for a mouse click in the 
CPM-GOMS technique can be read from the example in Figure 7. That is, clicking the mouse 
button requires a 50 ms cognitive operator and two motor operators at 100 ms each. The fact 
that the shift-click takes the same time as the simple click is due to the shift key operation being 
overlapped with earlier processing, so that it is not on the critical path. 

3.4. Some Research Directions 

Even a cursory review of the cognitive modeling research efforts in HCI is beyond the scope of 
this paper, even if attention is restricted to those that are likely will lead to additional engineering 
models. However, it is worthwhile to briefly discuss some important research topics that are 
indicated by the italicized areas in Figure 2. 

As mentioned before, there are properties of tasks that are not captured by GOMS models, 
either because more than just procedural knowledge is involved, or because the knowledge is not 
in the form of routine cognitive skill, but rather in a state that requires complex reasoning or 
problem solving. As suggested by the other approaches label at the top of Figure 2, research in 
this area could lead to additional design techniques based on identifying the critical properties of 
a task domain and determining whether the system design has the appropriate relationship to the 
task. For example, Kieras (1988b) suggests heuristics for determining what "mental model" 
information about the system should be conveyed to users. Other researchers have proposed 
models of how users learn a system by interacting with and observing it (e.g., Poison & Lewis, 
1990; Howes, 1994). A different approach would be to describe the general learning processes 
that eventually lead to a routine cognitive skill, for example the use of a general analogy 
mechanism in both ACT-R and Soar (Rieman, Lewis, Young and Poison, 1994). It remains to be 
seen whether useful engineering models emerge from research on these highly unstructured 
situations, and whether the models have clear relations to the GOMS family, or take a different 
form. 

The other italicized area concerns various other computational architectures and their 
application to HCI tasks. Some research architectures, such as Construction-Integration (Doane, 
Mannes, Kintsch, & Poison, 1992; Doane, McNamara, Kintsch, Poison, & Clawson, 1992; 
Kitajima & Poison, 1992) and ACT-R (Rieman, Lewis, Young, & Poison, 1994) have been 
applied to the analysis of HCI problems, but it is not yet clear what kind of design techniques 
will result. A particularly important issue is the underutilization of the parallel multiprocessor 
conceptual framework. The only currently documented GOMS technique based on this 
framework is CPM-GOMS, and as pointed out below, there is currently a lack of models and 



techniques for many of the related design issues. Work underway by John and colleagues 
(Nelson, Lehman, & John, 1994) applies the Soar cognitive architecture to the same kinds of 
interactions as CPM-GOMS, including using a Soar model to generate the PERT charts for a 
CPM-GOMS analysis. A new computational architecture occupying this space is the EPIC 
architecture being developed by Kieras, Meyer, and Wood (Kieras & Meyer, 1994; Wood, 
Kieras, & Meyer, 1994). In EPIC, a production-rule cognitive processor is embedded in a set of 
parallel-running perceptual and motor processors whose properties are based on the current 
human performance literature. Work thus far shows that human performance data in high- 
performance parallel tasks can be quantitatively predicted by EPIC models using GOMS 
methods in program form. If techniques can be articulated for constructing such models 
routinely, then the range of tasks covered by GOMS methodology will be substantially 
increased. 

4. Applying GOMS to Design 

When a designer approaches a design task, he or she applies the heuristic, analytic and 
empirical design techniques known to be useful for the task at hand. For instance, as illustrated 
by the presentation in Oberg, Jones, & Horton (1978), a mechanical engineer designing a 
flywheel may use algebraic equations to estimate the initial dimensions of the wheel (analytic 
technique), then make sure the design is within the maximum safe speed for that type of wheel 
from tables of empirical results (empirical technique), and finally modify his or her design by 
including a safety factor (heuristic technique). In order to apply these techniques, a designer 
must know what techniques are available, to what design tasks they are applicable, and whether 
the benefit from applying the technique outweighs the effort to apply it. In the preceding 
sections of this paper, we laid out the GOMS family of analytic techniques available to the 
computer system designer. In this section, we provide the additional information required for a 
designer to choose one of these techniques: which techniques are suitable for which design 
situations, what are the benefits of using each of techniques, and an estimate of the effort 
involved in using the technique. 

A design situation has two characteristics important to selecting a GOMS analysis technique: 
the type of task the users will be engaged in, and the types of information gained by applying the 
technique. Figure 8 shows which GOMS family methods can be used for each combination of 
type of task and type of information. In this section of the paper, we will first discuss the task 
type dimension, and then for each type of information gained, we will describe the issues 
involved in using the different GOMS techniques that apply. The fact that some of the cells are 
empty points to a need for further research on GOMS family techniques. In some cases, existing 
techniques could be modified and adapted for these cases, but the Figure presents the techniques 
as currently documented. 

4.1. Characterizing the User's Tasks 

Although user tasks can be characterized in many different ways, three dimensions are 
important for deciding whether a GOMS analysis technique is applicable to the user's task, and 
which technique is most suitable: the degree of routinized skill involved in the user's task, the 
sequentiality of the user's task, and the degree to which the interaction is under the control of the 
user versus the computer system or other agents involved in the task. 

Skill. The skill dimension of tasks runs from one extreme of problem-solving, where the user 
does not know how to perform a task and must search for a solution, to routine cognitive skill, 
where the user knows exactly what to do in the task situation and simply has to recognize that 
situation and execute the appropriate actions (see CM&N, 1983, Chapter 11). As previously 
discussed, the extant GOMS techniques apply only to the routine end of this dimension. GOMS 
has no direct way of representing the nature or difficulty of the problem-solving required to 
discover the appropriate operators, methods, or selection rules; rather, understanding and 
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predicting such behavior is an active area of cognitive psychology research. Because of this 
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Figure 8. GOMS techniques available for different combinations of task type and the type of design 
information desired. Note that only tasks that are routine cognitive skills are included, and information 
types not provided by GOMS models are not shown. 

limitation, Figure 8 shows that the only task type for which GOMS models apply are routine 
cognitive skills. 

It is important to remember, however, that most computer-based tasks, even very open-ended 
ones, have substantial components of routine cognitive skill. First, many tasks will evolve from 
problem-solving to routine skill after extensive use, and predicting a fully practiced user's 
performance is valuable, because such performance can not be empirically measured for a 
system that is just being designed and not yet implemented. Second, many tasks have elements 
of both routine skill and problem-solving. For instance, CMN (Ch. 10) showed that the expert's 
task of laying out a printed circuit board with a CAD tool was about half problem-solving to 
figure out what to do next (i.e., acquire the next unit task) and half execution of the unit task, 
predictable by a GOMS technique. One detailed study of using a new programming language to 
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create a graphing application showed that embedded in the problem-solving activities of 
designing the program and figuring out how to use the new language was the routine behavior of 
manipulating the help system and that GOMS was applicable to the analysis of this behavior 
(Peck & John, 1992). Other examples of GOMS analysis of routine use in otherwise complex 
tasks include the widely studied text-editing situation, spreadsheet use (Lerch, Mantei & Olson, 
1989), digital oscilloscope use (Lee, Poison & Bailey, 1989), and even playing a video game 
(John & Vera, 1992; John, Vera & Newell, 1994). Thus, although a user's task may seem to be 
primarily a problem-solving task, there will be aspects of that task that involve routine cognitive 
skill. It is these aspects of the system design for which GOMS analysis can be used to improve 
the design to allow users to more effectively work on the non-routine, creative parts of the 
overall task. 

Sequential vs. parallel activity. Many HCI tasks can be usefully approximated as sequential 
application of operators, such as text-editing. Other tasks involve so much overlapping and 
parallel activities that this simplification does not usefully approximate the task, as in the 
telephone operator tasks analyzed by Gray, John and Atwood (1992, 1993). Because currently 
only the very detailed CPM-GOMS is applicable to the parallel case, it is important to consider 
when a task involving some parallel operations can be usefully approximated by a sequential 
model. One such case is when the parallel operations can be represented as a simple 
modification to the sequential model. For example, in the text-editing example used throughout 
this paper it is logically necessary that users must determine visually the location of an object 
before they point at it with a mouse. In a sequential analysis, there would be a operator such as 
VISUALLY-LOCATE-OBJECT followed by a POINT-TO-OBJECT operator. But practiced users can 
apparently visually locate a fixed object on the screen (e.g., items on a menu bar) simultaneously 
with pointing at it with a mouse, meaning that these two operators can execute in parallel. This 
parallel execution can be approximated in a sequential model by simply setting the time for the 
VISUALLY-LOCATE-OBJECT operator to zero (see Gong, 1993). 

The second case is when the parallel operations are taking place below the level of analysis of 
the design issues in question, or independently of them. For example, NGOMSL could be used 
to determine if a telephone operator's procedure for entering a billing number was consistent 
across different task contexts. As long as the configuration of parallel operators does not differ 
between design alternatives or task contexts, such a sequential analysis could be useful. But note 
that since the NGOMSL model would not accurately reflect the underlying production-rule 
structure for such a task, the quantitative measures of the effect of consistency on reduction of 
learning time would be suspect; thus NGOMSL should not be used for quantitative predictions 
for parallel tasks. 

Locus of control. Computer system tasks can be roughly categorized into passive-system tasks 
and active-system tasks. In passive-system tasks, the user has control over the pace and timing of 
task events; the computer merely sits and waits for inputs from the user. Text editing is a typical 
passive-system task. In active-system tasks, the system can produce spontaneous, asynchronous 
events outside of the user's control. Thus the user must be prepared to react to the system, which 
can also include other people who are providing information or making requests. Telephone 
operator tasks and aircraft piloting are good examples of active system tasks. Many video games 
are maniacally extreme active systems. The introduction of artificial intelligence techniques into 
an interface to anticipate user's needs is likely to result in active systems. 

The difference between GOMS analyses for active and passive systems is somewhat subtle. 
The basic concept of GOMS models and analysis is indifferent to whether the system is active or 
passive, in that in either case, one can describe the methods and selection rules that the user must 
possess in order to accomplish goals with the system. The difficulty lies in the underlying 
human information-processing architecture. An active system may produce events that require 
the user to abandon the current goal and set up a new goal to accomplish. In contrast, the goals 
involved in using a passive system are static in the sense that once created, they endure until 
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accomplished. Thus active systems may entail methods in which goals have to be suspended, 
dropped, or created on the fly. In the general case, humans interacting with an active system can 
be modeled only by cognitive architectures that permit dynamic goal rescheduling. Such 
processing involves modifying the goal stack, or perhaps rebuilding it from information in 
memory or on an external display. For example, a simple relaxing of CMN-GOMS' strict goal- 
stack allowed John and colleagues to predict the functional-level and keystroke-level operators 
of a nine-year-old expert playing a videogame (John & Vera, 1992; John, Vera & Newell, 1994). 

For practical analysis with currently developed techniques, there are two approaches available 
for active systems. The first is a GOMS analysis in sequence form such as KLM or CPM- 
GOMS, in which a particular pattern of activity involving goal rescheduling could be 
represented. Here, the interruptability is handled by the analyst. This approach was used 
successfully by Gray, John & Atwood (1992, 1993) in modeling telephone operators in their 
interaction with customers. 

The second approach is to construct a CMN-GOMS or NGOMSL model under the 
approximating assumption that the active system produces events that can be responded to with 
methods that either will not be interrupted, or do not conflict with each other. Typically the top- 
level method simply waits for an event, and then invokes whatever submethods are appropriate 
for responding to the event. For example, the complex operator's associate system analyzed by 
Endestad & Meyer (1993) had this structure. This approximation clearly fails to deal with the 
case in which the user must respond to simultaneous or mutually interrupting events, but the 
analysis can still be useful in identifying usability problems with the system. 

4.2. Design Information Provided by GOMS Models 

Figure 8 shows several types of design information that GOMS models can provide. Clearly 
there are many other kinds of information relevant to design; these are not included in the Figure 
because there are no GOMS family techniques for them. Examples of kinds of information not 
provided by GOMS are: (1) standard human factors issues such as readability of letters and 
words on the screen, visual quality of a display layout, recognizability of menu terms or icons, 
and memorability of commands; (2) the quality of the work environment, user acceptance, and 
affect (e.g., is the system fun to use or does it cause boredom, fatigue, and resentment); (3) the 
social or organizational impact of the system and the resulting influence on productivity. 

An additional type of design information not shown in Figure 8 is an informal understanding of 
the design issues. That is, as pointed out by Bennett & Karat (1989), a GOMS analysis can have 
purely heuristic value. Since a GOMS model makes explicit what the system requires the user to 
do, constructing it is a way for a user interface designer to become more aware of the 
implications of a design. Since a common design error is to produce a system without careful 
consideration of what it imposes upon the user, any exercise that requires the designer to think 
carefully about the procedures entailed by the design can help in a purely intuitive way to 
identify usability problems and clarify the nature of the user's task. 

Functionality: Coverage and consistency. The primary design question about functionality is 
whether the system provides some method for every user goal. As discussed above, GOMS 
methods cannot generate or predict the range of goals a user might bring to a system. However, 
once the designer generates a list of likely user goals, any member of the GOMS family can be 
used to check that a method exists for each one in a proposed or existing system, as shown in 
Figure 8. 

While an analysis of functional coverage may not require a formal description of the methods, 
it is important to consider the content of the methods at least informally. That is, decisions about 
functionality are based on whether the system provides a function reasonably suitable for the 
task, meaning that the method involved must be reasonably simple and fast. For example, 
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consider that the user of a word processor might have the goal of putting footnotes at the bottom 
of the appropriate pages. Some word processors have functionality specialized for footnoting, 
and so have very simple methods for accomplishing this goal. Other word processors lack this 
functionality, and so can put footnotes on a page only if the user places and formats them "by 
hand", and this work has to be redone if the length of the text changes. Despite this clumsiness, 
such limited word processors still provide a method for accomplishing the footnoting goal. 
Thus, it would be rare that functionality in a simple all-or-none sense is considered in an 
interface design; there are at least implicit requirements on performance or learning time for the 
corresponding methods. If it is important to quantify these requirements, GOMS family 
members can provide quantitative predictions as discussed in the next two subsections. 

Information can be obtained about functional consistency by comparing methods and the 
knowledge necessary to perform different commands. NGOMSL is particularly suited to an 
analysis of consistency, because the structure and content of NGOMSL methods can be 
inspected, and the learning time predictions of NGOMSL and CCT take this form of consistency 
into account. That is, a consistent interface is one in which the same methods are used 
throughout for the same or similar goals, resulting in fewer methods to be learned. Furthermore, 
Kieras (1988, 1994a) provides simple heuristics for assessing similarity of methods for 
consistency analysis. 

Operator sequence. Two of the GOMS family members, CMN-GOMS and NGOMSL, can 
predict the sequence of overt physical operators a user will perform to accomplish a task 
(whereas with KLM, the analyst must supply the sequence of operators). That is, the methods 
and selection rules specify which commands a user will enter, the menu-items they will select, 
and so forth, to accomplish their goals. The best technique for exploring operator sequences on 
sequential tasks depends on the number of benchmark tasks being considered, in a way described 
below for execution time predictions. The situation for parallel tasks is much less rich. At this 
time, only CPM-GOMS is available for studying the sequence of operators and their possible 
interleaving in a parallel task. As described above, currently, the CPM-GOMS technique results 
in models in sequence form in a PERT chart. Although each PERT chart represents only one 
configuration of operators that the analyst has chosen to represent, these charts are easily 
manipulated with project management software, so that many configuration can be explored 
quickly. Thus, the technique allows the analyst to investigate the effects of different selection 
rules, methods, and different levels of interleaving. 

Execution time. Figure 8 shows that several members of the GOMS family can predict 
execution time, under the restrictions that the user must be well practiced and make no errors 
during the task. Some HCI specialists feel that these restrictions mean that GOMS models are 
not useful in actual design situations, because many users are novices or causal users, and errors 
are very common and time consuming. Errors will be discussed more below. However, we view 
the execution time predictions of GOMS models to be akin to EPA mileage ratings for cars. 
That is, although few drivers get as mileage as good as predicted by the EPA, the ratings are 
useful in predicting the direction and rough magnitude of differences between different makes of 
cars. Similarly, GOMS predictions help compare system design alternatives. If a GOMS model 
predicts a definite execution time difference between systems, say using the engineer's rule of 
thumb of more than 20%, a designer can be fairly certain that a real difference exists and is in the 
direction predicted by the GOMS model. Although GOMS models have been shown to be even 
more accurate in some cases (e.g., Gray, et al. 1993; Gong, 1993), we believe that further 
examination of when greater accuracy can be expected is necessary before we can make stronger 
recommendations for the general case. In many design situations, alternative systems do differ 
substantially (by more than 20%) and this level of accuracy is useful for weeding out undesirable 
alternatives. 

Of course, if the system being designed will not be used enough by any single user to produce 
expert performance (e.g. a walk-up-and-use application to help home-buyers locate a house in a 
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new city) GOMS predictions of execution time may not be useful compared to empirical results 
on other design issues such as the recognizability of menu terms to the first-time user. In 
addition, execution time is not an important variable in some systems, e.g., the success of a video 
game hinges more on the excitement it creates than on the speed at which a player can play the 
game. Likewise, the critical design target for educational software is the support it provides for 
learning, rather than the speed at which the user can operate it. On the other hand, interfaces for 
games and educational software often waste the user's time by methods that are slow and clumsy 
for no good reason. This mixture of the expected pattern of use, functionality, and usability 
concerns should be kept in mind. GOMS family models can contribute to designing software 
that is fast and easy to use, even if this is sometimes only a secondary design criterion. 

Since sequential tasks have been the most studied in GOMS research, there are multiple 
techniques for predicting execution time in sequential tasks. The choice of technique depends 
primarily on whether the methods need to be explicitly represented for other purposes. If not, the 
KLM is by far the easiest technique. If explicit methods are needed for other reasons, e.g., to 
evaluate learning time or to design documentation, then using separate KLMs for execution time 
is inefficient; CMN-GOMS or NGOMSL models will provide both execution time and other 
types of information. For both execution time and operator sequence prediction, an important 
practical concern is whether the number of benchmark tasks is small. If so, then the predictions 
of operator sequence and execution time can be obtained by hand-simulation of the models, or 
simply by manually listing the operators, as for the KLM. But if the number of benchmark tasks 
is large, then it is probably worth creating machine-executable versions of an NGOMSL model, 
which can be done in a variety of ways in almost any programming language. This should 
become simpler in the future, as computer-based tools for GOMS models become available (e.g. 
Wood, 1993; Byrne, Wood, Sukaviriya, Foley, & Kieras, 1994). 

Learning time. Information about learning time is provided only by NGOMSL models, and 
these predictions cover only the time to learn the methods in the GOMS model and any LTM 
information they require. These predictions have been validated in a variety of situations, and so 
merit serious consideration. But as mentioned above, there are clearly other aspects of a system 
that the user must learn, and other mechanisms involved in learning, besides those represented in 
the NGOMSL predictions. For example, teaching a user an appropriate mental model of a 
device can improve learnability and inference during subsequent use of the device (Kieras & 
Bovair, 1984; Kieras, 1988b), so designers may want to communicate such a model to their 
users. The class of models and methodologies presented here do not represent the knowledge 
and mechanisms required for using a mental model, and so have no basis for predicting the 
utility of a mental model or the time required to learn it (see Kieras, 1988b, 1990 for more 
discussion). Likewise, the concepts and principles discussed above as research directions 
(section 3.4) go beyond the simple procedure-learning situations captured by CCT and 
NGOMSL. 

For practical situations, the recommendation is that NGOMSL learning time predictions should 
be used with caution, and preferably only in comparing two designs. Such comparisons should 
be fairly robust, since as noted above, a more complex interface should be harder to learn than a 
simpler one in a variety of possible learning situations. The analyst should keep in mind two 
important learning time issues. First, the time to learn the interface procedures may be 
insignificant in total training time for systems whose users must acquire substantial domain 
knowledge, such as a CAD/CAM system or a fighter aircraft weapons control system. Such 
domain knowledge may involve learning words or icons in the interface, or operators (e.g. 
BANK-AIRCRAFT) assumed in the analysis that the user must learn before they can execute the 
methods. Second, the predicted procedure learning time could be quite misleading for "walk up 
and use" systems or other "self evident" systems for which little or no explicit training is 
supposed to be required. To make the point clear, a method involving only a single step of 
typing an unlabelled control key would yield a very low predicted learning time, but the user 
may have no easy way to learn the correct keystroke in the actual usage situation. An example 
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of just this problem is found in Karat, Boyes, Weisgerber, and Schäfer (1986) who explored 
transfer of training between word processors (usually well predicted by CCT) and found that 
some experienced users of one word processor were completely stymied in trying to learn a new 
word processor because they could not figure out how to scroll the screen! 

Error recovery support. The relationship of GOMS analyses to human error behavior deserves 
some discussion because of a common misunderstanding. CMN, and almost all subsequent 
GOMS work, presents analyses and predictions based on the assumption that the user does not 
make errors. Since errors in computer usage are quite frequent, it would seem that GOMS 
family models have little to say about actual human performance. But we would argue, along the 
lines of the above analogy with EPA mileage estimates, that GOMS models of error-free 
performance do in fact provide useful design information. For example, a poorly designed 
system that is difficult to learn and to use even under a no-errors assumption is almost certainly 
still a poor design if the user does make errors. So, optimizing learning time and execution time 
under the no-error assumption should result in a system that is a good design overall, given that 
errors do not always occur, and assuming that some reasonable error recovery is possible. 

To further clarify, there are three design issues involved with errors: (1) preventing users from 
making errors; (2) predicting or anticipating when and what errors are likely to occur given a 
system design;and (3) designing the system to help the user recover from errors once they have 
occurred. Despite the obvious importance of the first two issues, at this time research on human 
errors is still far from providing more than the familiar rough guidelines concerning the 
prevention of user error. No prediction methodology, regardless of the theoretical approach, has 
yet been developed and recognized as satisfactory, and even the theoretical analysis of human 
error is still in its infancy (see Reason, 1990 for more discussion). At this time, GOMS models 
also fail to address error prediction or prevention. 

However, as originally pointed out by CMN, GOMS has a direct application to the problem of 
error recovery. Once an error has occurred, the design question is whether the system provides a 
good method for the user to follow in recovering from the error. That is, is there a fast, simple, 
consistent method for the goal RECOVER-FROM-ERRORl (e.g., an ubiquitous undo command). 
Such a design question is no different in substance from designing the methods for the ordinary 
user goals. Figure 8 shows that any of the GOMS models can be used to address this question, 
with the specific choice depending on the specific aspect of interest, such as the time to execute 
the recovery procedure. Thus, once the possible frequent or important errors are determined, 
evaluating designs for the quality of support for error recovery can be done with ordinary GOMS 
approaches. 

4.3. Time and Effort for Learning and Using GOMS in Design. 

Using any method in design has both the cost of learning how to use the method, and also the 
time and effort to apply it to a specific design situation. Because of the large amount of detailed 
description involved, GOMS methodology has often been viewed as extremely time- and labor- 
intensive. This impression of the difficulty of GOMS methodology is probably a residue of the 
research effort involved to develop the techniques in their original form, and does not reflect the 
effort required to learn and to apply an already developed technique. In fact, there is now 
enough accumulated experience to assess the actual costs; it is clear that the GOMS 
methodologies shown in Figure 8 have an excellent return on investment, and the amount of the 
investment is much less than commonly believed. Some of the case studies in Section 5 
demonstrate this effectiveness. 

Based on our experience with teaching GOMS techniques to university and industrial students, 
the difficulty of learning a GOMS methodology depends mostly upon the complexity of the 
assumed underlying cognitive architecture. The KLM is based only on a simple serial stage 
framework, and so is conceptually the simplest. It is our experience, and the experience of other 
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HCI instructors at several universities, that the KLM can be taught to undergraduates in a single 
class session with a few homework assignments and these students can construct models that 
produce execution time predictions accurate enough for design decisions (see Neilsen & Phillips, 
1993; John, 1994). Likewise, the simple original form of GOMS, CMN-GOMS, is based on 
only the serial stage conceptual cognitive framework and so is relatively easy to understand and 
construct. A single class session seems to suffice if the student already has the basic skill of task 
decomposition and so can develop goal hierarchies for tasks. 

Both NGOMSL and CPM-GOMS are based on more complex architectures, and are thus 
harder to learn and to use, but for different reasons. The difficulty in using NGOMSL models is 
a result of working in terms of the underlying CCT cognitive architecture, which requires 
working out complete and accurate methods, with deliberate goal and working memory 
manipulation, and a higher degree of formality and precision than CMN-GOMS. NGOMSL can 
be taught in a few undergraduate class sessions based on Kieras's "how-to" description (1988a, 
1994a) and a couple of homework assignments with feedback. Full-day tutorials, such as at the 
CHI conferences (Kieras, 1994b) and in industrial short-courses appear to be adequate to get 
software developers started in the technique. There seems to be little point in using CCT itself, 
since the technical skills and facilities for production-rule modeling are much more demanding 
compared to using NGOMSL, which produces practically the same results. 

An estimate of the overall effort in applying NGOMSL to an actual design problem is provided 
by the case study conducted by Gong (1993; see also Gong & Kieras, 1994) which is 
summarized in Section 5. In brief, he found that using NGOMSL in an application development 
situation to evaluate a design and compare a revision to the original required only about a fifth of 
the time spent on interface coding, and only about half of the time of an empirical evaluation 
comprising an informal survey and a single full-scale empirical comparison of the two designs. 

The difficulty in using CPM-GOMS models is due to the inherent difficulty of identifying and 
describing in detail how perceptual, cognitive, and motor processing activities are coordinated in 
time. John and Gray (1992; 1994) have built a series of PERT-chart templates for a dozen or so 
common situations (e.g. perceiving visual information, typing, holding a conversation, etc.) and 
present these as building-blocks to combine into models of complex tasks. A few undergraduate 
class sessions is enough to allow students to manipulate existing CPM-GOMS models easily and 
correctly and give them a good start towards building their own models from scratch. Again 
full-day tutorials appear to present this material to the satisfaction of the tutorial participants 
(John & Gray, 1992; 1994). 

In contrast to the GOMS techniques in Figure 8, the research approaches mentioned in sections 
3.2 and 3.4 (ACT-R, Soar, Construction-Integration and EPIC) do not yet have articulated task 
analysis procedures, and so can be applied by the practitioner at this time only by emulating the 
ongoing research. This means that the practitioner would need to have a full set of research 
skills and resources to use the approach, and must be willing to accept the tentative nature of any 
models or results that will be produced. In order to become proficient enough to build models on 
their own, the learner must have an appropriate background in psychology or computer science 
and must undergo an apprenticeship with the experienced users of the technique that may stretch 
from a few weeks to a few months. 

4.4. Effort Required for Answering Design Questions. 

The effort required to use the different GOMS techniques to answer design and evaluation 
questions depends on the types of questions as well as on the techniques. Often there is a 
substantial start-up cost, but once the first models are built, subsequent questions require much 
less effort to answer. In addition, rather than fully analyzing an entire system interface, a 
properly selected subset of the interface can be isolated for detailed analysis, meaning that useful 
results can be obtained from quite modest modeling efforts. Some of the cases in Section 5 
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demonstrate this approach. Thus, the decision to invest effort in GOMS modeling depends on 
how many design issues and iterations will be involved. Here we will examine a few of the 
common uses of GOMS models and the corresponding required effort. 

Focus for design effort. A critical practical design question is where the design effort should 
be focused. For example, should user procedures be streamlined to decrease the human 
execution time, or is it more important to improve the underlying software algorithms to 
decrease the response time of the system? To answer these types of questions, GOMS methods 
that produce quantitative predictions of system performance can be used to profile the overall 
execution times of the human-computer system to determine which portions of the interaction 
are taking significant or excessive amounts of time, and then priorities can be assigned to design 
issues in a rational manner. Some of the examples of actual GOMS design projects described in 
the next section used GOMS techniques in just this way. For example, CPM-GOMS was used to 
demonstrate that refining the screen design and keyboard layout would have relatively little 
effect on system performance compared to speeding up the response latency (Gray, John & 
Atwood, 1993). Because system profiling requires quantitative predictions of performance, it is 
one of the more time-consuming uses of GOMS. However, the payoff can be substantial 
because the analysis can be done early in the design process, at little cost compared to empirical 
testing, and thus can prevent resources from being poured into design efforts that have relatively 
little value. 

Comparing alternative designs. Comparing alternative designs is the most obvious use of 
GOMS techniques. Since GOMS analyses do not require a running system, but can make 
a priori predictions of performance, they can be used early in the design process to evaluate 
different ideas before they are implemented or even prototyped. At the other extreme, existing 
alternative systems can be evaluated without installing them in a user organization, as will be 
illustrated by some of the case studies presented in the next section. 

The effort involved in making comparisons between alternative systems depends on the kind of 
information required. Do you need only to know if important functionality is covered by both 
systems? Is expert execution time an important issue for the long-term use of the system? Does 
high turnover of personnel make training time of great importance? Answering the first question 
requires a rather shallow CMN-GOMS analysis, whereas the second question may require in- 
depth CPM-GOMS analysis, and the third question requires a full-blown NGOMSL model. 
Notice that models created to compare alternative designs can overlap with models created for 
other purposes. For example, if the design process uses GOMS to focus the design effort, the 
same model can be used as a basis to profile a design to identify problems, suggest solutions, and 
compare alternative solutions. 

An additional determinant of the effort required is how many alternatives will need to be 
evaluated and how similar they will be. It is our experience that once a first model is 
constructed, it can serve as a base for similar designs, which then require only small 
modifications to the base model. So the effort put into modeling the initial system can be 
amortized over the number of alternatives evaluated. For instance, the CPM-GOMS models 
developed for the existing NYNEX workstation took about two staff-months, but once they were 
created, the potential benefits of new features could be evaluated literally in minutes (Gray, et. 
al. 1993). 

Sensitivity and parametric analyses. In many design situations, the value of design ideas 
depends on assumptions about characteristics of the task domain or the users of the system. 
Common techniques in engineering design are to examine such dependencies with sensitivity 
analysis (how sensitive the predictions are to the assumptions) and parametric analysis (how the 
predictions vary as a function of some parameters). Again, because GOMS family members can 
make quantitative predictions of performance, they can be used to do such analyses. Examples 
can be found in the first descriptions of the KLM (Card, Moran & Newell 1980a, CMN, Ch. 8). 



37 

In addition to profiling with predicted measures, such analyses also help guide empirical data 
collection by identifying the most sensitive issues, ensuring that the most valuable data is 
obtained given limited time and resources. The effort involved can be minimal if the 
assumptions and parameters are amenable to simple models like the KLM, and clearly more 
substantial if a CPM-GOMS or NGOMSL model is required. However, since these analyses 
typically vary only a few assumptions or parameters, they usually require only baseline models 
for a set of benchmark tasks and minimal manipulation of those models to discover the desired 
relationships. So once a base GOMS model has been constructed, exploring the sensitivity of the 
analysis and the effects of different parameters is inexpensive and fast. 

Documentation and on-line help systems. Documentation and on-line help systems pose 
design questions that are very well addressed by GOMS methodology. Users normally know 
what goal they want to accomplish, but must turn to documentation or help because they do not 
know a method for accomplishing the goal, and cannot deduce one by experimenting with the 
system. However, most documentation and help provides only very low-level methods, at the 
level of command or option specification, as if the user's goal was USE-THE-BELL-OPTION in ftp, 
rather than a user-task-level goal such as TRANSFER-FILES. Consequently, typical documentation 
and help supports the rare user who already has most of the required method knowledge and 
needs only a few details. 

In contrast, help and documentation can explicitly present the methods and selection rules 
users need in order to accomplish their goals. The list of user goals provides a specification of 
the document organization and entries for the index and table of contents. Experiments done by 
Elkerton and co-workers (Elkerton & Palmiter, 1991; Gong & Elkerton, 1990) using NGOMSL 
shows that this approach works extremely well, with results much better than typical commercial 
documentation and help. Thus, while it is standard advice that documentation and help should 
be "task oriented", it has not been very clear how one ensures that it is; GOMS provides a 
systematic, theory-based, and empirically-validated approach to determining the required content 
of procedural documentation and help. 

A related application of GOMS is determining which alternative methods are the most 
efficient, and so should be presented in training and documentation. For example, in telephone 
operator call-handling, CPM-GOMS could predict execution time differences between different 
methods; identifying these differences would suggest the most efficient methods and selection 
rules to include in documentation and training materials. 

5. Examples of Actual Applications of GOMS Family Members 

Some of the following brief examples of the use of GOMS models have appeared as research 
papers because it was possible for the developers to write up their work. However, others arose 
in more typical development processes of real products, and are documented here through 
interviews with the developers. 

Case 1. Mouse-driven text editor (KLM) 

The first known use of the KLM for real system design was, not surprisingly, at Xerox (Card & 
Moran, 1988). In the early 1980s, when designing the text editor for the Xerox Star, the design 
team suggested several schemes for selecting text. These different schemes called for different 
numbers of buttons on the mouse. The goals were to use as few buttons on the mouse as possible 
so it would be easy to learn, while providing efficient procedures for experts. It was relatively 
easy to run experiments with the different schemes to test learnability for novices; everyone is a 
novice on a newly created system. However, it would have been substantially more difficult to 
run experiments with experts, because there were no experts. Experts would have to be "created" 
through extensive training, a prohibitive procedure both in time, workstation availability, and 
money. The design team therefore used a combination of experimental results on novices and 
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KLMs of the same tasks to explore tradeoffs between learnability and expert performance. 
These models contributed directly to the design of the mouse for the Xerox Star. 

Case 2. CAD system for mechanical design (KLM) 

(Based on Monkiewicz, 1992 and an interview with Brenda Discher ofApplicon, Inc.) 
Applicon, a leading vendor of CAD/CAM software for mechanical design, ported its BRAVO 
CAD package from a dedicated graphics terminal implementation into a Macintosh environment 
during the 1980s, but began to receive reports that the new implementation was actually slower 
and clumsier to use than the previous dedicated graphics terminal version. Applicon's interface 
design group used extensive KLM analyses to identify the source of the problems. For example, 
the analysis identified a major problem in the menu paradigm. In the original environment, the 
menu selections remained on the screen ("marching menus"), permitting multiple low-level 
selections without repeating the higher-level selections. The new implementation used the same 
menu organization, but followed the Macintosh rules that required menus to disappear once the 
lowest level selection was made. The resulting need to repeat the higher order selections greatly 
increased the task execution times. Candidate redesigns (e.g. using a dialog box) were evaluated 
with the KLM. Other aspects of the interface were refined with the KLM, such as reducing the 
depth of menu commands to only two levels to increase working speed without eliminating the 
many functions and options required for CAD tasks. The new design was also implemented for 
UNIX and VMS platforms, and this BRAVO 4.0 system is currently a successful and widely 
used suite of CAD applications. The quantification of execution time provided by the KLM was 
valuable to Applicon both internally to help justify and focus interface.design efforts and set 
priorities, and also externally to help support competitive claims. 

Case 3. Directory assistance workstation (KLM) 

(Based on an interview with Judith R. Olson, University of Michigan) In 1982, some members 
of a human factors group at Bell Laboratories (Judith Olson, Jim Sorce, and Carla Springer) 
examined the task of the directory assistance telephone operators using the KLM. Directory 
assistance operators (DAOs) use on-line databases of telephone numbers to look up numbers for 
customers. The common wisdom guiding procedures for DAOs at that time in the Bell System 
was "key less - see more." That is, DAOs were instructed to type very few letters for the 
database search query (typically the first three letters of the last name and occasionally the first 
letter of the first name or the first letter of the street address) so that the database search would 
return many possible answers to the query. It was felt that it was more efficient for the DAO to 
visually search for the answer to the customer's request on a screen full of names than to type a 
longer, more restrictive, query that would produce fewer names on the screen. 

The group analyzed the task and found two inefficiencies in the recommended procedures. 
First, the searches required unacceptably long times when the keyed-in query brought up 
multiple pages of names. Second, they found an unacceptably high rate of misses in the visual 
search. That is, the information that the customer wanted was actually on the screen, but the 
DAOs, trying to perform very quickly, often failed to see it in the midst of all the irrelevant 
information. 

To arrive at a better design, the group analyzed the make-up of the database and categorized 
which queries would be common or rare, and whether the standard procedures would yield many 
names or relatively few. Based on this analysis, a set of benchmark queries was selected, and a 
parameterized KLM was constructed that clarified the tradeoff between query size and the 
number of retrieved names. The resulting recommendation was that DAOs should type many 
more keystrokes than had been previously thought, to restrict the search much more. This report 
was submitted at about the time of the breakup of the Bell System and the direct results of this 
particular report are impossible to track. However, current DAO training for NYNEX 
employees no longer advocates "key less - see more." Instead, DAOs are taught to key as much 
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as needed to get the number of responses down to less than one screen's worth and to add more 
letters and redo the search rather than visually search through more than one screen. Currently, 
about 40% of NYNEX DAO searches result in only one answer returning from the search 
(Wayne Gray, personal communication). 

Case 4. Bank deposit reconciliation system (KLM) 

(Based on an interview with Judith R. Olson, University of Michigan) Olson, acting as a 
consultant to a software vendor, used the KLM in 1985 to redesign the interface for a system to 
be used by banks for deposit reconciliation. The system would allow a bank employee to 
compare the teller's keyed-in transaction information with scanned-in images of a customer's 
deposited checks and handwritten deposit slip in order to look for discrepancies such as keying 
errors by the teller, or duplications by the customer. Any discrepancy would be need to be 
detected, resolved, and then reported to the customer or to another department that would make 
the correction. The focus of the design work was on the layout of the display, to ensure that the 
required information could be rapidly obtained and compared. 

Olson's analysis assumed that the system operators would search for the possible discrepancies 
in order of decreasing frequency, which was assumed to be known to the operators. This 
specified which items would be examined in which order, thus determining the basic task 
method. Olson developed KLM operator times for display activities such as visual scanning, 
matching handwritten digits to computer display digits, and then constructed KLMs for different 
types of discrepancies and display designs, and was able to rapidly evaluate different 
configurations and layouts for the display to arrive at an optimal design.. Unfortunately, in the 
end, the software vendor did not adopt Olson's proposed redesign for reasons not involving the 
execution time of the task. 

Case 5. Space operations database system (KLM) 

(Overmeyer, personal communication). In 1983, the KLM was used in the design of a large 
command and control system for space operations. The system was to be used to monitor and 
maintain a catalog of existing orbital objects and debris. A new version of the system to replace 
the existing text-based database system was intended to have a graphical user interface. The 
software design of the new system was to be analyzed using simulation techniques to determine 
whether the system architecture and algorithms would provide adequate performance before the 
system was implemented. In order to quickly construct this simulation of the complete system, 
the KLM was used to represent the human operator's time with a preliminary interface design. 
With a couple of person-months work, about 50 benchmark tasks were selected that represented 
the basic interaction techniques, such a obtaining information about an orbiting object by using a 
joystick to select it and open an information window about it. With an additional person-month 
of work, KLMs were constructed for the preliminary design to give the execution time for each 
of the benchmark tasks. The system simulation was then run, and the software architecture 
modified to produce the required performance. 

The new interface was eventually prototyped and used in experiments to get actual human 
performance data for later simulations, and to obtain data on tasks that involved processes such 
as complex decision-making that were beyond the scope of the KLM. The empirical results 
showed that the earlier estimates provided by the KLMs were reasonably accurate. 

Thus the availability of usefully accurate estimates of user execution time early during the 
design process was critical in allowing the overall system performance to be assessed using 
simulation. The system was built, installed and in operation in the late 1980s and a descendant 
of the original system is still in operation today. 

Case 6. Television control system (NGOMSL) 
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Elkerton (1993) summarizes a design problem involving designing an on-screen menu 
interface for a high-end consumer electronics television set. In the current technology of such 
systems, the television set is actually under computer control, and the user must perform setup 
and adjustment tasks by navigating a menu structure and selecting options for setting and 
adjustments. With some of the more complex consumer electronics products now available, the 
resulting interface can be fairly complex, and has considerable potential for being misdesigned. 
Needless to say, ease of learning and use are both extremely important in such a product. 

According to Elkerton, currently most on-screen menu interfaces for complex televisions have 
obscure menu labels, deep menus for frequently performed tasks, and an arbitrary organization 
based on the product features rather than the user's tasks. In the product development situation 
described by Elkerton, there was not adequate time for extensive user testing and iteration of 
prototypes, and so an NGOMSL analysis was applied in an effort to help arrive at an improved 
interface quickly. The actual candidate designs were generated in the usual ways, and then 
analyzed with GOMS. 

An early result of the NGOMSL task analysis was determining that there was a key distinction 
between the infrequent but critical tasks required to set up the television (e.g. configure it for a 
cable system), and the occasional tasks of adjusting the set during viewing (e.g. changing the 
brightness), and the major "task", that of actually watching the programming on a TV or VCR. 
The actual starting point for the NGOMSL analysis was an initial proposal for an improved 
interface design whose main virtue was simplicity, in which a single function key would cycle 
through each of the possible control functions of the set, resulting in very simple navigation 
methods and on-screen displays. This design preserved the setup/adjustment distinction, and was 
confirmed by some user testing as superior to the original interface. However, the NGOMSL 
analysis also verified that using the interface was quite slow, thus interfering with the viewing 
task. 

The response was another proposed interface, following a more conventional menu structure, 
which the analysis showed, and user testing confirmed, interfered less with the user's main task. 
However, the NGOMSL analysis showed that the new prototype had inconsistent methods for 
navigating the menu structure; the setup and adjustment methods were different, which would 
lead to increased learning times and user frustration, and there were inconsistent methods for 
moving from one low-level function to another. Correcting these problems identified by the 
NGOMSL analysis produced a simpler, easier-to-learn interface. A interface based on some of 
these analyses and revised designs appeared in a television product line and is being considered 
for wider adoption by the manufacturer. 

Case 7. Nuclear power plant operator's associate (NGOMSL) 

Following a brief NGOMSL training workshop, Endestad and Meyer (1993) performed a fairly 
complete analysis of the interface for an experimental prototype of an intelligent associate for 
nuclear power plant operators. The system combined the outputs of several separate expert 
systems and other operator support systems, thus providing an integrated surveillance function. 
The total prototype system involved multiple networked computers, each with their own display 
monitors, and included a full simulation of a nuclear power plant. The basic concept of the 
system was that the information provided by the separate expert and support systems would be 
integrated by a single coordinating agent which would be responsible for informing the operator 
of an alarm event, making a recommendation, and referring the operator to the appropriate 
subsystem for supporting detail. NGOMSL methodology was a good choice to apply because of 
the difficulty of performing usability tests with highly trained users of limited availability and 
with such a complex system. For example, only a few types of emergency scenarios were fully 
supported in the prototype system. 

The top-level NGOMSL method was written to show the basic structure of the task with and 
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without the associate, thus clarifying the relative roles of the human operator and the system. 
The top-level method for the conventional situation, in which the operator's associate system was 
not present, simply had the operator working on his or her own in dealing with the various 
possible alarms and interacting with the separate expert and support systems. Thus the operator 
was required to engage in fairly elaborate reasoning, information searching, and ill-structured 
problem-solving right from the beginning of an alarm event. In contrast, the associate system 
would present an alarm event, a reference to the relevant subsystem, and a recommendation for 
action. It then requested the human operator to explicitly state agreement or disagreement with 
the recommendation. But any subsequent interactions concerning the alarm event were strictly at 
the operator's initiative; the operator was free to ignore the alarm, disregard the recommendation, 
or deal with it on their own. Thus the system potentially considerably simplified the initial 
reasoning and problem-solving required to handle the alarm event, and did not complicate the 
operator's task significantly. Of course, whether the associate was accurate enough to be trusted, 
or whether operators would come to rely on it unduly, could not addressed by a GOMS analysis. 

At lower levels of the interaction, the NGOMSL model identified some specific problems and 
suggested solutions. For example, the operator designated which alarm event should be 
displayed using a calculator-like palette of buttons to enter in the number, but the required 
method was clearly more convoluted than necessary. Another example is that the lack of certain 
information on many of the displays resulted in methods that required excess looking from one 
display to another, in same cases requiring large physical movements. A final example is that a 
newer design for a support system that provided on-line operating procedures was predicted to be 
faster than a previous design, but could be further improved by more generic methods. 

Case 8. Intelligent tutoring system (NGOMSL) 

Steinberg & Gitomer (1993) describe how an NGOMSL analysis was used to revise the 
interface for an intelligent tutoring system. The tutoring system concerned training Air Force 
maintenance personnel in troubleshooting aircraft hydraulic systems such as the flight control 
systems. The basic content and structure of the tutoring was based on a cognitive analysis of the 
task domain and troubleshooting skills required. The tutoring system provided a full multimedia 
environment in which the trainee could "move" around the aircraft by selecting areas of the 
aircraft, manipulate cockpit controls, observe external components in motion, and open 
inspection panels and examine internal components. 

The user's basic method for troubleshooting was to think of a troubleshooting operation and 
carry it out. The original interface assumed that the troubleshooting operations were local in the 
sense the user would think of a single component to observe or manipulate, carry out this action, 
and then would think of another component-action combination to perform. However, the 
NGOMSL analysis showed that many troubleshooting activities had a larger scope spanning 
several components or locations on the aircraft. A typical activity was an input-output test, in 
which inputs would be supplied to one set of components, and then several other components, 
often in an entirely different location, would be observed. For example, the troubleshooter 
would enter the cockpit, set several switches, and then start moving the control stick, and then 
observe the rudders to see if they moved. 

In the original interface, there was no support for such multiple-component input-output tests, 
and so the user had to traverse the component hierarchy of the simulated aircraft several times 
and perform the component actions or observations individually. The revised interface 
suggested by the NGOMSL analysis allowed the user to easily view and act on multiple parts of 
the aircraft, with rapid access to and from the aircraft cockpit. This reflected the basic structure 
of the troubleshooter's task in a more realistic fashion, as well as making it faster and simpler to 
carry out the testing activity in the context of the tutoring system. 

Case 9. Industrial scheduling system (NGOMSL) 
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Nesbitt (in preparation) reports a use of an NGOMSL model to deal with a common situation 
in which an existing interface is to be extended. The system is question is a partly automated 
scheduling system for managing equipment maintenance activities in a steel-making plant. Since 
shutting down equipment in steel plants can have serious effects on production scheduling, 
accurate management of downtimes is critical. The original version of the system included 
automatically generated downtimes, and a interface for viewing the downtimes. The required 
extension was to allow users to enter downtimes directly into the scheduling system. 

The steel plant has a natural hierarchical structure, about five levels deep, in which either a 
terminal or non-terminal location (a set of machines) could be shut down for maintenance. If a 
non-terminal location of the plant is shut down for a downtime period, then all sublocations are 
also deemed to be shut down. Given the natural hierarchical structure, the choice for the display 
of downtime information was based on a combination of plant hierarchy and date, in which the 
user viewed a grid showing locations as rows and days as columns, with each cell containing the 
number of schedule downtime hours. By selecting a row, the user can move down a hierarchical 
level to view the downtimes broken out into more detail for the sublocations. By clicking on a 
cell, the user can view a list of the individual downtime schedule items comprising the listed 
total hours. 

A new set of requirements was to allow the user to enter new downtimes or modify existing 
ones, under the assumption that the list of downtimes was unordered. The first solution was to 
simply add a dialog box to the grid-based display interface, so that once the relevant location and 
date had been selected by traversing the hierarchy, the user could simply specify the downtime 
start time, duration and other information, for that location on that date. The implementation 
effort would be minimal. However, the GOMS analysis showed that the resulting interface 
would be extremely inefficient. Adding a new downtime requires first traversing the hierarchy 
to the affected location and date, while modifying the location or downtime date requires 
deletion and reentry. A side effect is that there is no method to allow the user to create a new 
downtime entry by simply selecting and modifying an existing downtime, since the dates and 
location of a downtime were unmodifiable. 

A redesigned interface alleviated these problems. The solution was a form-based screen in 
which the user could specify all of the downtime attributes by selecting from context-sensitive 
lists or by editing the attribute fields. All of the downtime attributes, such as all five location 
levels, were simultaneously displayed. While selecting a location still required traversing the 
plant structure hierarchy, only the locations were involved, not the date, so the selection 
consisted of simply filling in a set of fields using selection from lists whose contents were 
determined by the higher-level selection. In addition, a new downtime entry could be created by 
selecting an existing entry and then modifying its fields as needed. 

The GOMS analysis made the difficulties of the original interface clear, and over a set of actual 
downtime scheduling tasks predicted that the redesigned interface would require overall only 
half the execution time as the original, with a substantial improvement for modifying existing 
schedule times. 

Case 10. CAD system for ergonomic design (NGOMSL) 

Gong (1993, see also Gong & Kieras, 1994) provides a detailed case study of the application of 
GOMS methodology to an actual software product. The program was a CAD system for the 
ergonomic analysis of workplace design, with an emphasis on biomechanical analyses to detect 
problems of occupational safety in situations such as assembly line jobs requiring handling of 
awkward or heavy objects. The user, typically an industrial engineer, would describe a work 
situation by specifying the user's physical posture while carrying out a step in the job and other 
parameters such as the weight of a lifted object, and the program would generate information on 
stress factors, such as the likelihood of lower back injury. This program was being sold on a 
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commercial basis in a PC DOS version; Gong's task was to develop a Macintosh version of the 
program for commercial distribution. Applying GOMS analysis to refine the design was 
suggested by the fact that too few domain experts were available to serve as subjects in a formal 
conventional user test, and an attempt to collect informal feedback produced mostly information 
about functionality or user expectations rather than ease of use. 

Gong constructed a GOMS model of the initial version of the software, which adhered to the 
Macintosh interface guidelines, and then examined the model for problems. An example of such 
a problem was that the interface assumed a default method for specifying posture that users 
would probably always override in favor of a far simpler and easier method. Another example is 
that the methods had many RETRIEVE-FROM-LTM operators; the user had to memorize many 
associations between commands and the menu names that they appeared under. A final example 
is that certain methods involved time-consuming interaction with "modal" dialogs, which are 
dialog boxes that have to be explicitly dismissed before the user can continue. Gong (1993) lists 
many such specific identified problems and addressed them in specific interface design solutions. 
The revised interface was predicted to be about 46% faster to learn and also about 40% faster to 
use than the original interface. A subsequent empirical test confirmed these predictions. 

Gong reported that the time spent developing and working with the GOMS model was only 
about 15 days, compared to about 80 days spent on software development and programming, and 
34 days spent on both the informal user feedback collection and the formal evaluation study. 

Thus the NGOMSL methodology was usefully accurate in its predictions, helped identify 
specific usability problems, and provided a basis for design solutions. In addition, despite the 
widespread opinion that GOMS analysis is too time-consuming to be practical, the actual effort 
required was quite reasonable, especially given that a single design iteration using the 
methodology produced a substantial improvement in learning and execution time. 

Case 11. Telephone operator workstation (CPM-GOMS) 

The details of this application of GOMS, both technical and managerial, can be found in Gray, 
John and Atwood, 1993, and Atwood, Gray and John, in press). In 1988, the telephone company 
serving New York and New England (NYNEX) considered replacing the workstations then used 
by toll and assistance operators (TAOs), who handle calls such as collect calls, and person-to- 
person calls, with a new workstation claimed to be superior by the manufacturer. A major factor 
in making the purchase decision was how quickly the expected decrease in average work time 
per call would offset the capital cost of making the purchase. Since an average decrease of one 
second in work time per call would save an estimated $3 million per year, the decision was 
economically significant. 

To evaluate the new workstations, NYNEX conducted a large-scale field trial. At the same 
time, a research group at NYNEX worked with Bonnie John to use CPM-GOMS models in an 
effort to predict the outcome of the field trial. First, models were constructed for the current 
workstation for a set of benchmark tasks. They then modified these models to reflect the 
differences in design between the two workstations, which included different keyboard and 
screen layout, keying procedures, and system response time. This modeling effort took about 
two person-months, but this time included making extensions to the CPM-GOMS modeling 
technique to handle this type of task and teaching NYNEX personnel how to use CPM-GOMS. 
The models produced quantitative predictions of expert call-handling time for each benchmark 
task on both workstations, which when combined with the frequency of each call type, predicted 
that the new workstation would be an average of 0.63 seconds slower than the old workstation. 
Thus the new workstation would not save money, but would cost NYNEX about 2 million 
dollars a year. 

This was a counter-intuitive prediction. The new workstation had many technically superior 
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features. The workstation used more advanced technology to communicate with the switch at a 
much higher speed. The new keyboard placed the most frequently used keys closer together. 
The new display had a graphic user interface with recognizable icons instead of obscure 
alphanumeric codes. The procedures were streamlined, sometimes combining previously 
separate keystrokes into one keystroke, sometimes using defaults to eliminate keystrokes from 
most call types, with a net decrease of about one keystroke per call. Both the manufacturer and 
NYNEX believed that the new workstation would be substantially faster than the old one, by one 
estimate, as much as 4 seconds faster per call. Despite the intuition to the contrary, when the 
empirical field-trial data were analyzed, they supported the CPM-GOMS predictions. The new 
workstation was 0.65 seconds slower than the old workstation. 

In addition to predicting the quantitative outcome of the field trail, the CPM-GOMS models 
explained why the new workstation was slower than the old workstation, something which 
empirical trials typically cannot do. The simple estimate that the new workstation would be 
faster was based on the greater speed of the new features considered in isolation. But the 
execution time for the whole task depends on how all of the components of the interaction fit 
together, and this is captured by the critical path in the CPM-GOMS model. Because of the 
structure of the whole task, the faster features of the new workstation failed to shorten the critical 
path. 

Thus, examination of the critical paths revealed situations in which the new keyboard design 
slowed down the call, why the new screen design did not change the time of the call, why the 
new keying procedures with fewer keystrokes actually increased the time of some calls, and why 
the more advanced technology communication technology often slowed down a call. The 
complex interaction of all these features with the task of the TAO was captured and displayed by 
CPM-GOMS in a way that no other analysis technique or empirical trial had been able to 
accomplish. 

NYNEX decided not to buy the new workstations. The initial investment in adopting the 
CPM-GOMS technique paid off both in this one purchase decision, and by allowing NYNEX to 
make some future design evaluations in as little as a few hours of analysis work. 

6. Summary and Conclusions 

The several specific GOMS modeling techniques are all related to a set of general concepts, 
both conceptual frameworks for human information processing, and a general approach to the 
analysis of tasks. This general approach emphasizes the importance of the procedures that a user 
must learn and follow to perform well with the system to accomplish goals. By using 
descriptions of user procedures, the techniques can provide quantitative predictions of procedure 
learning and execution time. While other aspects of system design are undoubtedly important, 
the ability of GOMS models to address this critical aspect makes them a key part of the scientific 
theory of human-computer interaction and also useful tools for practical design. The different 
GOMS techniques correspond to different set of assumptions about the underlying information- 
processing architecture and the simplifications required to economically address design issues. 
These assumptions are clear-cut enough for practical advice to be stated on which technique 
should be used for what purpose. Finally, when the effort required to use GOMS analysis is 
considered, both in terms of the logic of analysis and design, and also in terms of the application 
examples presented in this paper, it is clear that GOMS models can make a worthwhile 
contribution to developing more usable computer systems. 
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